Expertise in Software Development

Towards an Interdisciplinary Theory

Sebastian Baltes
¥ @s_baltes

[4" empirical-software.engineering ;FKSE[/;\RISIDTE

My Background

< Australi

1~

AR
B,

q
//’*”\4\,% %i’ %

Sebastian Baltes — Towards a Theory of Software Development Expertise

R
%

\E/ /Q\ airbnb

Issues in Sampling Constructing Urban
Software Developers Tourism Space Digitally
Methodology PG JHPS Interdisciplinary Research

Kok ’lwh

Expertise Development

2013 Sketching

Code Plagiarism

§\\
=l stackoverflow .
Regular Expressions - Continuous Integration
RegViz v N
g GitHub Travis Cl
Sebastian Baltes — Software Developers' Work Habits and Expertise 3

Expertise
Development

O ch.‘ [

Towards a Theory of Software Development Expertise

Sebastian Baltes
University of Trier
Trier, Germany
research@sbaltes.com

ABSTRACT

Software development includes diverse tasks such as implementing
new features, analyzing requirements, and fixing bugs. Being an
expert in those tasks requires a certain set of skills, knowledge, and
experience. Several studies investigated individual aspects of soft-
ware development expertise, but what is missing is a comprehensive
theory. We present a first conceptual theory of software develop-
ment expertise that is grounded in data from a mixed-methods
survey with 335 software developers and in literature on exper-
tise and expert performance. Our theory currently focuses on pro-
gramming, but already provides valuable insights for researchers,
developers, and employers. The theory describes important prop-
erties of software development expertise and which factors foster
or hinder its formation, including how developers’ performance
may decline over time. Moreover, our quantitative results show
that developers’ expertise self-assessments are context-dependent
and that experience is not necessarily related to expertise.

ESEC?FSE
2018

Stephan Diehl

University of Trier
Trier, Germany
diehl@uni-trier.de

expert performance [78]. Bergersen et al. proposed an instrument to
measure programming skill [9], but their approach may suffer from
learning effects because it is based on a fixed set of programming
tasks. Furthermore, aside from programming, software develop-
ment involves many other tasks such as requirements engineering,
testing, and debugging [62, 96, 100], in which a software develop-
ment expert is expected to be good at.

In the past, researchers investigated certain aspects of software
development expertise (SDExp) such as the influence of program-
ming experience [95], desired attributes of software engineers [63],
or the time it takes for developers to become “fluent” in software
projects [117]. However, there is currently no theory combining
those individual aspects. Such a theory could help structuring exist-
ing knowledge about SDExp in a concise and precise way and hence
facilitate its communication [44]. Despite many arguments in favor
of developing and using theories [46, 56, 85, 109], theory-driven
research is not very common in software engineering [97].

https://empirical-software.engineering/projects/expertise/

Sebastian Baltes — Software Developers' Work Habits and Expertise

https://empirical-software.engineering/projects/expertise/

Software Development Expertise?

Implementing

Data
new features

structures

Testing

Communication

Debugging

Sebastian Baltes — Towards a Theory of Software Development Expertise

Software Development Expertise?
S,

—

java Implementing) =
new features

’ 099
Data <% %

structures © %

4 commncanon {]

Unit . Jbehave,
: © Testing ~

— “Debuggingg
C@

e,

Sebastian Baltes — Towards a Theory of Software Development Expertise 6

x
(

Which factors influence expertise

development over time?
epRk SRR TS

“"'.' J > o,
- \ ;_-' ve
ot
5 L ‘\f#

Qg™ A NG .
TR W‘u " g v o U :

How are experience and expertise related?
n ’ - '] ’. i]
, a ﬁ ‘. ‘ '."l(
-, ‘ ¢ -4 ~ | o

Definitions

An expert is someone “with the special skill or
knowledge representing mastery of a
particular subject”

Expertise are ,the characteristics, skills, and
knowledge that distinguish experts from
novices and less experienced people.”

K. Anders Ericsson

Sebastian Baltes — Towards a Theory of Software Development Expertise

10

Expert Performance

S
Q

b
&
>

* |n some areas (e.g., chess), there exist representative
tasks and objective criteria for identifying experts

» Software development includes many different tasks

 Much more difficult to find objective measures for
quantifying software development expert performance

-

il —

& T i

> . s
3w

i S S " L
-
- o B
- - - B

T 5 L

5 AT .*[‘,T '*'[l l y-

How to structure the characteristics,
skills, knowledge, and experience that
distinguish expert software developers?

Our Expertise Model

* Task-specific (e.g., writing code, debugging, testing)
* Focuses on individual developers

| Process view|(repetition of tasks)

* Notion of transferable knowledge and
experience from related fields or tasks

« Continuum instead of discrete expertise steps

expert expert

novice novice

Theory Classification

* A process theory intends to explain and understand “how an
entity changes and develops” over time (Ralph, 2018)

* In a teleological process theory, an entity “constructs an
envisioned end state, takes action to reach it, and monitors the
pProgress (van de Ven and Poole, 1995)

* Our theory:
e Entity:
Individual software developer working on different software
development tasks

* Envisioned end state:
Being an expert in (some of) those tasks

Research Design

Related » Focused Survey — Selfj;;fi?gent
Work JavaDevs | y
(S2) 4

Open Survey

~
| Conceptual]

| Conceptual
Devs |Inductiof.| Grounded Theory | J : | Theory Il }
(S1) Theory . Experienced 3
Devs (S3) | \"
\ J \)

L J !
|
Phase 2 Phase 3

THE CAMBRIDGE HANDBOOK OF

* Induction: 335 online survey participants in total Expertise and

Expert Performance

* Deduction: Main source “Cambridge Handbook of
Expertise and Expert Performance”

Sebastian Baltes — Towards a Theory of Software Development Expertise

15

Work context

influences

Grounded Theory

shapes

/ \
Knowledge

Sebastian Baltes — Towards a Theory of Software Development Expertise

Behavior,

character traits,

and skills

make more likely
fo acquire

lead to Quality of

better source code

Experience
\/

Shapes

Constructing
Grounded Theory

2nd Edition

Kathy Charmaz

16

Research Design

» Focused Survey — Self-assessment

{ Java Devs HEYSE

/
) (s2) X%
Conceptual | Conceptual }

Devs Inductionf Grounded | Theory | : 1 Theory I
(S1) L Theory Experienced |
Devs (S3) | *
(J |

L J

Related
Work

Open Survey Deduction

J

Y Y
Phase 1 Phase 3

THE CAMBRIDGE HANDBOOK OF

* Induction: 335 online survey participants in total Expertise and

Expert Performance

* Deduction: Main source “Cambridge Handbook of
Expertise and Expert Performance”

Sebastian Baltes — Towards a Theory of Software Development Expertise

17

Preliminary Conceptual Theory

Individual differences

Mental abilities

Personality

Skills

— Motivation

self-reflection

Education > General knowledge < Mentoring
generates transfer?t generates
Task Task-specific knowledge repetition O
1 t affects
makes more/less
: . affects
likely to acquire T &
ffect =
amee » Behavior 3 % gligels Performance
F 3 a B
makes more/less ol
likely to acquire HEEE
Task context y quire | affects

Task-specific experience

F y

feedback

A 4

transfer

General experience

monitoring

Research Design

Related » Focused Survey — Self:zssleifgvent
Work { Java Devs 4
Open Surve Deduction (S2)

P y : Conceptual] Conceptual
Devs Inductionj Grounded Theory | J : Theory Il
(S1) L Theory b Experienced

Devs (S3)
\) |)
Y \ , Y
I
Phase 1 Phase 2 Phase 3
» Induction: 335 online survey participants in total e

Expert Performance

* Deduction: Main source “Cambridge Handbook of
Expertise and Expert Performance”

Sebastian Baltes — Towards a Theory of Software Development Expertise

19

[

The product
itself

[Work as challenge

Seeing
usage

Quality

[Personal priorities

Reward

Final Conceptual Theory

architecture

(Algorithms and data ’ (Design and 1 (Programming 1
structures architectural patterns paradigms
Requirements | | Project ’
| management

engineering

feedback
General knowledge

generates

[

Helping
others

[Openness }\
[Agreeableness]\
[Conscientiousness }//
[Age-related decline]/

Individual differences
Motivation

§| Personality (FFM)

|_{ Mental abilities

%{ Skills

generates t fe
N ransfer :
Task \l Task-specific knowledge *
| | makes more/less
. ; affects
likely to acquire °
affect | ; P
g Behavior iy
o
makes more/less affects ®
Task context likely to acquire
| Task-specific experience *

Problem-solving

Continuous
learning

Assessing

[Communication
| trade-offs

self-reflection

repetition ()

Structure Peer-review]

Maintainability Static analysis]

Code Quality

|

Performance

Commit
frequency

\{ Productivity

LOC
added/deleted

transfer

feedback | General experience *|

monitoring

_—

‘ Training H

Information

Team
exchange

Experi- ’
structure

’ Freedom ’ ‘ .
mentation

Time tracking

Issue tracking

Tool
support

#lssues
resolved

Expected vs.
actual time

Project management]

Development diaries]

Conceptual Theory?

Theorizing DEDUCTIVE
to Practice A
C tual
DEDUCTIVE onceptya Operationalization
development
Continuous
refinement and
development
Application Confirmation or ABDUCTIVE / INDUCTIVE
v disconfirmation
Practice
ABDUCTIVE / INDUCTIVE to
Theorizing

Building Theories in Software Engineering
Dag LK. Sjeberg, Tore Dyba, Bente C.D. Anda, and Jo E. Hannay
in Guide to Advanced Empirical Software Engineering (2008).

Sebastian Baltes — Towards a Theory of Software Development Expertise 21

[

The product

itself

[Work as challenge

Seeing
usage

Quality

[Personal priorities

Reward

Final Conceptual Theory

Designing
architecture

Debugging

Testing ‘

(Algorithms and data ’ (Design and 1 (Programming 1
structures architectural patterns paradigms
Requirements | | Project
| management

engineering

feedback
General knowledge

generates

[

Helping

others

[Openness

[Agreeableness

[Conscientiousness

[Age-related decline

\Individual differences

§| Personality (FFM)
|_{ Mental abilities

%{ Skills

repetition ()

Motivation |<-
|
|
|

Problem-solving

Continuous
learning

Assessing

[Communication
| trade-offs

self-reflection

generates t fe
X ransfer :
Task \l Task-specific knowledge *
| | makes more/less
. ; affects
likely to acquire °
affect | ; P
g Behavior iy
o
makes more/less affects ®
Task context likely to acquire
| Task-specific experience *

transfer

feedback |

General experience

*l

monitoring

_—

I

‘ Training ’[

Information

Team
exchange

’ Freedom ’ ‘
structure

Experi-

mentation

1

Time tracking

Issue tracking

Sebastian Baltes — Towards a Theory of Software Development Expertise

Tool
support

Structure Peer-review]

Maintainability Static analysis]

Code Quality

Performance

Commit
frequency

LOC
added/deleted

Productivity

#lssues
resolved

Expected vs.
actual time

Project management]

Development diaries]

22

Final Conceptual Theory

| feedback
Mentoring™

Education

General knowledge

repetition
Individual differences P O

Motivation akes more/less| affects affects
lixely to acquire =
Personality (FFM) affect Bahavior .
A 1t
ikelv t : affects
Skills Task context ely 1o acquire | Affects

Task-specific experience™
transfer
General experience *

Sebastian Baltes — Towards a Theory of Software Development Expertise

-
«

self-reflection feedback

monitoring

A 4

Knowledge

 Knowledge is a “‘permanent structure of information stored in
memory” (Robillard, 1995)

* Developer’'s knowledge base considered (most) important
factor influencing performance (curtis, 1984)

» Studies suggest that this knowledge base is “highly language
dependent’, but experts also have “abstract, transferable

knowledge and skills” (sonnentag et al., 2006)

* “Semantic” vs. “syntactical” knowledge (shneiderman and Mayer, 1978)

Knowledge

Knowledge is a “permanent structure of information stored in
memory” (Robillard, 1995)

Developer’'s knowledge base considered (most) important

factor influencing performance (curtis, 1984)

e

Studies suggest {
dependent’, but
knowledge and 3

‘Semantic” vs. “sy|

FIFTEEN YEARS OF PSYCHOLOGY IN SOFTWARE ENGINEERING:
INDIVIDUAL DIFFERENCES AND COGNITIVE SCIENCE

BILL CURTIS ICSE 1984

Microelectronics and Computer Technology Corporation (MCC)
Austin, Texas

DAl -T- 1 Tl £ C ~ L3 N 1 r

Knowledge

Knowledge about “paradigms [...], data
structures, algorithms, computational

complexity, and design patterns”

Mentoring

General knowledge
enerates

Education
transfert

Task-specific knowledge ™ & oot An “intim ate knowled g e of
the design and philosophy of

affects Performance the language”

Behavior
makes more/less ‘ P —"
likely to acquire | affects
‘%
‘lﬁ

makes more/less|f e .
likely to acquire

aaonpe.d
ajelagI|op

Task-specific experience ™

A

transfer |
General experience *

Experience

* Many participants mentioned not only the quantity, but also
the quality of experience

Having shipped ,a significant
amount of code to production
or to a customer”

Having built ,everything from small
projects to enterprise projects”

=

~

|| * §

Final Conceptual Theory

Individual differences

Motivation

r 3

Personality (FFM)

Mental abilities

Skills

self-reflection

| feedback
Education |-\ », General knowledge |« Mentoring™
generates transfert generates
— tition
Task-specific knowledge * repetition ()
1 1 affects
makes more/less affects
likely to acquire o|&
A 4 ~ -
affect — » Behavior %-8' affect Performance
r 3 a. 3
makes more/less i Sy
likely to acquire affects
Task context | /%€y quire | affects
Task-specific experience™
transfer | | «
feedback General experience * monitoring

Tasks

Asked participants to name the three most important tasks
that a software development expert should be good at

Most frequently mentioned: “Architecting the
1. Designing a software architecture software in a way that

2. Writing source code allows flexibility in
3. Analyzing and understanding project requirements
requirements and future applications

of the components”

Other mentioned tasks: testing,
communicating, debugging

Q

-
2

'

|

Sebastian Baltes — Towards a Theory of Software Development Expertise 29

x
(

Which factors influence expertise

development over time?
epRk SRR TS

“"'.' J > o,
- \ ;_-' ve
ot
5 L ‘\f#

Final Conceptual Theory

| feedback
Education |\ » General knowledge |¢ /I Mentoring™
generates transfert generates
Task — % repetition
Individual differences Task-specific knowledge * P Q
1 1 affects
Motivation makes more/less affects
likely to acquire o|&
. A 4 - :
Personality (FFM) affect — » Behavior %-8' affectg Performance
ees yy ol
Mental abilities makes more/less affectsm %
SKills Task context | /kely to acquire | affects
Task-specific experience™
transfer | | «
self-reflection feedback General experience * monitoring

Individual Differences: Motivation

Related work describes how individual differences affect
expertise development

Mental abilities and personality are relatively stable
Motivation can change over time

Many participants intrinsically motivated:
* Problem solving

* Seeing a high-quality solution
* Creating something new
 Helping others

“The Initial design is fun,
but what really is more
rewarding is refactoring.”

N |

|

Final Conceptual Theory

Individual differences

r 3

Motivation

Personality (FFM)

Mental abilities

Skills

self-reflection

| feedback
Education |-\ », General knowledge |« Mentoring™
generates transfert generates
—= ition
Task Task-specific knowledge * repetition ()
1 1 affects
makes more/less affects
likely to acquire o|&
A 4 ~ -
affect » Behavior %-8' affects Performance
- a. 3
makes more/less i Sy
likely to acquire affects
Task context || <€V quire | affects
Task-specific experience™
transfer | | «
feedback General experience * monitoring

(office, coworkers, customers etc.)

Task Context

[wHERE |

Work environment [why S\
P

Project constraints
(external dependencies, time, etc.)

Can either foster or hinder expertise dev.

Lwto)

2

2
-
Vﬂn

We asked: What can employers do?

1.

2.

Encourage learning

(training courses, library, monetary incentives)
Encourage experimentation

(side projects, being open to new ideas/technologies)
Improve information exchange

(facilitate meetings, rotating between teams/projects)
Grant freedom

(less time pressure)

Bud-$1xa3u02/60/4T0Z/SPeoldn/3usiuos-dm/60)g/Wod ajIgouuesy//:diy

Final Conceptual Theory

Individual differences

r 3

Motivation

Personality (FFM)

Mental abilities

Skills

self-reflection

| feedback
Education », General knowledge |« /I Mentoring™
generates transferl generates
Task Task-specific knowledge * repetition ()
1 affects
makes more/less affec
likely to acquire &
affect — » Behavior ' affects Performance
~
r 3 m
makes more/less o
likely to acquire affecty
Task context | /K€y quire | affects
Task-specific experience™

feedback

\ 4

transfer

A 4

General experience *

-
«

monitoring

Deliberate Practice Dy 3

Having more experience does not automatically

lead to better performance (ericsson et al., 1993)
-

Performance may even decrease over time (Feltovich, 2006)

Length of experience only weak correlate of job performance
(Ericsson, 2006)

Deliberate practice: ,Prolonged efforts to improve
performance while negotiating motivational and external
constraints” (Ericsson et al., 1993)

Deliberate Practice: Self-Reflection

(Self-)reflection and feedback important to monitor
progress towards goal achievement (Locke and Latham, 1990)

“[TIhe more channels of accurate and helpful feedback

we have access to, the better we are likely to perform.”
(Tourish and Hargie, 2003)

Mentors, teachers, and peers are an important sources for
feedback

Final Conceptual Theory

Individual differences

Motivation

Personality (FFM)

Mental abilities

r 3

Skills

Education |\ > General knowledge « Mentoring
generates transfert generates
— tition
Task Task-specific knowledge * repetition ()
1 1 affects
makes more/less affects
likely to acquire o|&
\ 4 -~ :_
affect — » Behavior %-8' affects Performance
r 3 a. 3
makes more/less i Sy
likely to acquire affects
Task context | /%€y quire | affects
Task-specific experience™
transfer | | «

self-reflection feedback

*

General experience

monitoring

Final Conceptual Theory

Individual differences

Motivation

r 3

Personality (FFM)

Mental abilities

Skills

self-reflection

| feedback
Education |-\ », General knowledge |« Mentoring™
generates transferl generates
Task Task-specific knowledge * repetition ()
1 1 affects
makes more/less affects
likely to acquire o|&
affect * S| affecth
" » Behavior g--g | Performance
A (o) Q)
makes more/less i Sy
likely to acquire affects
Task context Ikely quire | affects
Task-specific experience™
transfer | | «

feedback

\ 4

General experience

*

monitoring

Performance

Go,
%
S -
Q <
A [
& 2
g 3

 We do not treat performance as a dependent variable that
we try to explain for individual tasks

Scope of this work:

 We consider different performance monitoring approaches
to be a means for feedback and self-reflection

Long-term goal:

* Build variance theory for explaining and predicting the
development of expertise

Performance P
L D

g
S 2
P s
& Z
N =

» Participants described different properties of expert’'s source
code (well-structured, readable, maintainable, etc.)

.Everyone can write [...] code which a
machine can read and process but the key
lies in writing concise and understandable
code which [...] people who have never
used that piece of code before [can read].”

%

~ -
e @
!

2

Performance Decline

Goal: Identify factors hindering expertise development

41.5% of participants observed a significant performance
decline over time (for themselves or others)

Reasons: “| perceived an increasing

« Demotivation procrastination in me and
e Changes in the work environment in my colleagues, by

+ Age-related decline working on the same tasks

over a relatively long time
[...] without innovation and
environment changes.”

 Changes in attitude
* Shifting towards other tasks

)

|

Age-Related Performance Decline

“For myself, it's mostly the effects of aging
on the brain. At age 66, I can't hold as
much information short-term memory,
for example. [...] | can compensate for a
lot of that by writing simpler functions
with clean interfaces. The results are still
good, but my productivity is much
slower than when | was youngevr.”

B
Y4

software architect, age 66

“Programming ability is based on
desire to achieve. In the early
years, it is a sort of competition.
[...] | found that | lost a significant
amount of my focus as | became
40, and started using drugs such
as ritalin to enhance my abilities.

This is pretty common among
older programmers.”

~
A

| |

software developer, age 60

Qg™ A NG .
TR W‘u " g v o U :

How are experience and expertise related?
n ’ - '] ’. i]
, a ﬁ ‘. ‘ '."l(
-, ‘ ¢ -4 ~ | o

Experience vs. Expertise

e Self-assessment with semantic differential (novice to
expert) and Dreyfus expertise model

Semantic Differential Scale

* Beginning of survey:
Please rate your Java programming expertise on the following scale:
1 (Novice) 2 3 4 5 6 (Expert)

O O O O O O

* End of survey:

Please rate your own Java programming expertise according to the five stages
described below.

Discrete Expertise Model

Stage 1 (Novice):
* has little or no experience
* wants unambiguous rules to accomplish his/her tasks
* is able to handle small, isolated tasks

Stage 2 (Advanced Beginner):
* has gained some experience
* can work more independently than a novice
* knows general principles in a limited context, but does not have a holistic understanding ("big picture”)

Stage 3 (Competent):
* has a holistic understanding of the problem domain
* bases his/her work on deliberate planning and extensive past experience
* can apply general maxims (e.g. design patterns) easily to specific contexts

Stage 4 (Proficient):
* has a vast amount of experience that he/she can intuitively apply to new contexts
* can easily differentiate between irrelevant and important details
+ constantly reflects on what he/she has done and revises own approach to perform better in the future

Stage 5 (Expert):
* he/she is a major source of knowledge and information for others
» primarily works from his/her intuition

expert

novice

Experience vs. Expertise

« Self-assessment with semantic differential (novice to
expert) and Dreyfus expertise model

* More experienced developers adjusted their ratings
when context was provided, less experienced not

Sample 2 Sample 3

2 3 4 5
I

2 3 4 5
I

—— c——

| | | |
Sem.Dif. Dreyfus Sem.Dif. Dreyfus

1
I
1
I

ews/weird-news/how-mcdonalds-takeaway-bag-ended-9664800

Summary for Researchers

« Can use our results when designing studies involving expertise
self-assessments or our theory building approach

* Clear understanding what distinguishes novices and experts:
Provide this context when asking for self-assessed expertise
and later report it together with the results

* Can use theory to design experiments (first operationalizations
described in paper)

'od

* Future Work: Operationalization, develop standardized
description of novice and expert for certain tasks

Summary for Developers

* See which attributes other developers assign to experts

* Learn which behaviors may lead to becoming a better software
developer:

* Deliberate practice

 Have challenging goals

* Build or maintain a supportive work environment
(also for others)

* Ask for feedback from peers

* Reflect about what one knows and what not

Sebastian Baltes — Towards a Theory of Software Development Expertise

51

Summary for Employers

* Learn what (de)motivates their employees:
* Main motivation: problem solving
* Main demotivation: non-challenging work

* |[deas on how to build supportive work environment
supporting self-improvement of staff:

* Good mix of continuity and change in software development
process @
Communicate clear visions, directions, and goals

Reward high-quality work wherever possible

* Revisit information sharing in company

Facilitate meetings

Sebastian Baltes — Towards a Theory of Software Development Expertise

52

Core of Conceptual Theory

Individual differences

Motivation

r 3

Personality (FFM)

Mental abilities

Skills

self-reflection

| feedback
Education |-\ », General knowledge |« Mentoring™®
generates transfer?t generates
— tition
Task Task-specific knowledge * repetition ()
1 1 affects
makes more/less affects
likely to acquire ol &
\ 4 -~ :
affect — » Behavior %-8' affect Performance
r 3 a. 3
makes more/less i Sy
likely to acquire affects
Task context | /K€y quire | affects
Task-specific experience™
transfer | | «
feedback General experience * monitoring

[

The product

itself

[Work as challenge

Seeing
usage

Quality

[Personal priorities

Reward

Complete Conceptual Theory

Designing
architecture

Debugging

Testing ‘

(Algorithms and data ’ (Design and 1 (Programming 1
structures architectural patterns paradigms
Requirements | | Project
| management

engineering

feedback
General knowledge

generates

[

Helping

others

[Openness

[Agreeableness

[Conscientiousness

[Age-related decline

\Individual differences

§| Personality (FFM)
|_{ Mental abilities

%{ Skills

repetition ()

Motivation |<-
|
|
|

Problem-solving

Continuous
learning

Assessing

[Communication
| trade-offs

self-reflection

generates t fe
X ransfer :
Task \l Task-specific knowledge *
| | makes more/less
. ; affects
likely to acquire °
affect | ; P
g Behavior iy
o
makes more/less affects ®
Task context likely to acquire
| Task-specific experience *

transfer

feedback | General experience

*l

monitoring

- T

‘ Training ’[

Experi-
mentation

Information

Team
exchange

’ Freedom ’ ‘
structure

1

Time tracking

Issue tracking

Sebastian Baltes — Towards a Theory of Software Development Expertise

Structure

Peer-review]

Maintainability

Static analysis]

Code Quality

Performance

Commit
frequency

LOC
added/deleted
#lssues
resolved
Expected vs.
actual time

Productivity

Tool Project management]

support

Development diaries]

54

[

The product
itself

[Work as challenge

Seeing
usage

[Personal priorities

Designing
architecture

Debugging
Writing code

Algorithms

[

structures

and data Design and

architectural patterns

J

Programming
paradigms

J }

[

Requirements

|

Project

]
J

engineering

L

management

)

feedback
General knowledge

generates transfer

generates

Reward
Helping
[ofhers [Openness

[Agreeableness]\
[Conscientiousness]//

Individual differences
Motivation

§| Personality (FFM)

Task

affect

\‘ Task-specific knowledg

o repetition O

makes more/less

|| Mental abilities

likely to acquire affects.c
I Behavior ey
ﬁ-

makes more/less
affects

Structure Peer-review]

J

Maintainability

Performance

Commit
frequency

Static analysis

Code Quality

[Age-related decline]/

Task context likely to acquire

Skills
| Task-specific experience *

|..
|
|
|

LOC
added/deleted

Productivity

#lssues
[Problem-solving i resolved
transfer
inati - Expected vs.
[Communication self-reflection feedback | General experience *| monitoring actual time
Continuous
learning
[Assessing
trade-offs Time tracking Tool Project management J
Trainin Team Information Freed Experi-
9 structure exchange reedom mentation Issue tracking suppor Development diaries]

Sebastian Baltes
@s_baltes

expertise.sbaltes.com

Data and scripts available on Zenodo

Sebastian Baltes — Towards a Theory of Software Development Expertise 55

Interested in pursuing a PhD in Australia?

Open topic
Broad area of (empirical) software engineering

Fully funded

Scholarship includes tuition fees & living expenses

Application deadline:
20 December 2019

Sebastian Baltes

@s_baltes [4 empirical-software.engineering

