Software Developers’ Work Habits and Expertise

Sketching, Code Plagiarism, and Expertise Development

Sebastian Baltes
YW @s_baltes

W Universitit Trier |:/|lempiricaI—software.engineering

Merriam-

Webster

Habit

,a settled tendency or usual
manner of behavior”

https://www.merriam-webster.com/dictionary/habit

Sebastian Baltes — Software Developers' Work Habits and Expertise

https://news.harvard.edu/gazette/story/2018/04/5-healthy-habits-may-increase-life-expectancy-by-decade-or-more/

https://www.merriam-webster.com/dictionary/habit

Studied Habits

k-

S
Sketches and | i h

2013 Diagrams in Sketching How Developers Locate
- - Practice Performance Bugs

Towards a Theory of
Software Development
Expertise

Expertise Development

SketchLink LivelySketches

Code Plagiarism 2018

\

=

stackoverflow Code Snippets
in GitHub Projects

Sebastian Baltes — Software Developers' Work Habits and Expertise 2

“Parallel Thread”

Issues in Sampling
Software Developers

(Q) airbnb
Methodology

2013 Constructing Urban
Tourism Space Digitally

Interdisciplinary Research
Open Data

=) SOTorrent &g 2018

Sebastian Baltes — Software Developers' Work Habits and Expertise 3

2013

Studied Habits

k- D
fj}g'%ﬂ O a"al
Sketches and _ | i =
Diagrams in Sketching How Developers Locate Towards a Theory of
Practice Performance Bugs Software Development
Expertise
Expertise Development
SketchLink LivelySketches
_
Code Plagiarism 2018
§\\

stackoverflow Code Snippets
in GitHub Projects

Sebastian Baltes — Software Developers' Work Habits and Expertise 4

Sketching

f—a

Y

=}

}_127\ G

Sketches and Diagrams in Practice

Sebastian Baltes
Computer Science
University of Trier
Trier, Germany

s.baltes@uni-trier.de

ABSTRACT

Sketches and diagrams play an important role in the daily
work of software developers. In this paper, we investigate
the use of sketches and diagrams in software engineering
practice. To this end, we used both quantitative and qual-
itative methods. We present the results of an exploratory
study in three companies and an online survey with 394
participants. Our participants included software develop-
ers, software architects, project managers, consultants, as
well as researchers. They worked in different countries and
on projects from a wide range of application areas. Most
questions in the survey were related to the last sketch or dia-
gram that the participants had created. Contrary to our ex-
pectations and previous work, the majority of sketches and

= FSE

<2014

Stephan Diehl

Computer Science

University of Trier
Trier, Germany

diehl@uni-trier.de

1. INTRODUCTION

Over the past years, studies have shown the importance
of sketches and diagrams in software development [6,11,43].
Most of these visual artifacts do not follow formal conven-
tions like the Unified Modeling Language (UML), but have
an informal, ad-hoc nature [6,11,23,25]. Sketches and dia-
grams are important because they depict parts of the mental
model developers build to understand a software project [21].
They may contain different views, levels of abstraction, for-
mal and informal notations, pictures, or generated parts [6,
11,41,42]. Developers create sketches and diagrams mainly
to understand, to design, and to communicate [6]. Media
for sketch creation include whiteboards, engineering note-
books, scrap papers, but also software tools like Photoshop

https://empirical-software.engineering/projects/sketches/

Sebastian Baltes — Software Developers' Work Habits and Expertise

https://empirical-software.engineering/projects/sketches/

Sketching

g—a

Y

=

I%\"B

&
A

0
A

Navigate, Understand, Communicate:

esem
How Developers Locate Performance Bugs | 2015

Sebastian Baltes*, Oliver Moseler*, Fabian Beck', and Stephan Diehl*
* University of Trier, Germany
T VISUS, University of Stuttgart, Germany

Abstract—Background: Performance bugs can lead to severe
issues regarding computation efficiency, power consumption, and
user experience. Locating these bugs is a difficult task because
developers have to judge for every costly operation whether
runtime is consumed necessarily or unnecessarily. Objective: We
wanted to investigate how developers, when locating performance
bugs, navigate through the code, understand the program, and
communicate the detected issues. Method: We performed a
qualitative user study observing twelve developers trying to
fix documented performance bugs in two open source projects.
The developers worked with a profiling and analysis tool that
visually depicts runtime information in a list representation and
embedded into the source code view. Results: We identified typical
navigation strategies developers used for pinpointing the bug, for
instance, following method calls based on runtime consumption.
The integration of visualization and code helped developers to

directly because the steps and tools required to optimize a
non-functional requirement like performance are substantially
different from those applied for fixing a functional bug. These
differences include: (i) developers cannot analyze whether a
program is correct regarding performance because there only
exist better or worse solutions; (ii) developers need to investi-
gate not only program state but also runtime consumption;
and (iii) collecting runtime information requires to set up
realistic benchmarks that differ from usual regression tests.
Also, Jin et al. [1] already pointed at the lack of studies on
how performance bugs are fixed by developers.

The user study presented in this paper aims at filling
this gap by investigating how developers navigate through
code, understand performance problems, and communicate

https://empirical-software.engineering/projects/debugging/

Sebastian Baltes — Software Developers' Work Habits and Expertise

https://empirical-software.engineering/projects/debugging/

Sketching

f: ;g—}%\“_ﬂ

&
A

A

Linking Sketches and Diagrams to Source Code Artifacts

Sebastian Baltes, Peter Schmitz, and Stephan Diehl
Computer Science
University of Trier
Trier, Germany

{s.baltes,diehl}@uni-trier.de

ABSTRACT

Recent studies have shown that sketches and diagrams play
an important role in the daily work of software developers.
If these visual artifacts are archived, they are often detached
from the source code they document, because there is no ad-
equate tool support to assist developers in capturing, archiv-
ing, and retrieving sketches related to certain source code
artifacts. This paper presents SketchLink, a tool that aims
at increasing the value of sketches and diagrams created dur-
ing software development by supporting developers in these
tasks. Our prototype implementation provides a web appli-
cation that employs the camera of smartphones and tablets
to capture analog sketches, but can also be used on desktop

https://empirical-software.engineering/projects/sketchlink/

= FSE

<2014

or generated parts [5,8,20,21]. Developers create sketches
and diagrams mainly to understand, to design, and to com-
municate [1,5]. Media used for sketch creation include not
only whiteboards and scrap paper, but also software tools
like Photoshop and PowerPoint [5, 10,17, 22].

Sketches and diagrams are important because they depict
parts of the mental model developers build to understand
a software project [13]. Understanding source code is one
of the most important problems developers face on a daily
basis [5,12,13,19]. However, this task is often complicated
by documentation that is frequently poorly written and out
of date [9,15]. Sketches and diagrams, whether formal or in-
formal, can fill in this gap and serve as a supplement to con-

Sebastian Baltes — Software Developers' Work Habits and Expertise

https://empirical-software.engineering/projects/sketchlink/

Sketching

g: }E}g‘\“

NG

&
A

0
A

Round-Trip Sketches: Supporting the Lifecycle of
Software Development Sketches from
Analog to Digital and Back

Sebastian Baltes, Fabrice Hollerich, and Stephan Diehl
Department of Computer Science
University of Trier
Trier, Germany
Email: research@sbaltes.com, diehl @uni-trier.de

Abstract—Sketching is an important activity for understand-
ing, designing, and communicating different aspects of software
systems such as their requirements or architecture. Often,
sketches start on paper or whiteboards, are revised, and may
evolve into a digital version. Users may then print a revised
sketch, change it on paper, and digitize it again. Existing tools
focus on a paperless workflow, i.e., archiving analog documents,
or rely on special hardware—they do not focus on integrating
digital versions into the analog-focused workflow that many users

VISSOFT 2017

media [13], because digital sketches can more easily be edited,
copied, organized, and shared [18]. Even if a digital version
exists, analog sketches may be kept as a memory aid [19].
Context information is often needed to understand informal
sketches [20] and information may get lost due to the transient
nature of sketches [12], [14].

Despite the widespread usage of sketches in many domains,
to_the best of our knowledoe there is_currentlv_no_tool that

https://empirical-software.engineering/projects/livelysketches/

Sebastian Baltes — Software Developers' Work Habits and Expertise

https://empirical-software.engineering/projects/livelysketches/

Sketching

=

o

oy
A

%‘%
A

SketehlLivk

https://www.youtube.com/watch?v=mG6xCiQpS80

p 4

Sebastian Baltes — Software Developers' Work Habits and Expertise

https://www.youtube.com/watch?v=mG6xCiQpS80

Sketching

- L.ive|y$ke+ches

. =, \ access annotations, i
% % . linked data, and !
— “\._ revisionsof the !
\\\ sketch :
6 \\\\~ 7. i
analog
digital
4, 5. /
@ " N
P O /w

S
&

' C edit and i
‘ link
annotate

Sebastian Baltes — Software Developers' Work Habits and Expertise

5 |
’§

Studied Habits

k- D
fj}g'%ﬂ O a"al
Sketches and _ | i =
2013 Diagrams in Sketching How Developers Locate Towards a Theory of
- Practice Performance Bugs Software Development
Expertise
Expertise Development
SketchLink LivelySketches
Code Plagiarism 2018
§\\

stackoverflow Code Snippets
in GitHub Projects

Sebastian Baltes — Software Developers' Work Habits and Expertise 11

Code Plagiarism

S‘
=| stackoverflow

Empirical Software Engineering
https://doi.org/10.1007/510664-018-9650-5

@ CrossMark

Usage and attribution of Stack Overflow code snippets
in GitHub projects

Sebastian Baltes' () . Stephan Diehl’ Al
|§\| SOTorrent -
Published online: 01 October 2018

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Stack Overflow (SO) is the most popular question-and-answer website for software devel-
opers, providing a large amount of copyable code snippets. Using those snippets raises
maintenance and legal issues. SO’s license (CC BY-SA 3.0) requires attribution, i.e., ref-
erencing the original question or answer, and requires derived work to adopt a compatible
license. While there is a heated debate on SO’s license model for code snippets and the

https://empirical-software.engineering/projects/snippets/

Sebastian Baltes — Software Developers' Work Habits and Expertise

12

https://empirical-software.engineering/projects/snippets/

Studied Habits

k- D
fj}g'%ﬂ O a"al
Sketches and _ | i =
2013 Diagrams in Sketching How Developers Locate Towards a Theory of
- Practice Performance Bugs Software Development
Expertise
Expertise Development
SketchLink LivelySketches
Code Plagiarism 2018
§\\

stackoverflow Code Snippets
in GitHub Projects

Sebastian Baltes — Software Developers' Work Habits and Expertise 13

Expertise
Development

O Lgo.‘ [

Towards a Theory of Software Development Expertise

Sebastian Baltes
University of Trier
Trier, Germany
research@sbaltes.com

ABSTRACT

Software development includes diverse tasks such as implementing
new features, analyzing requirements, and fixing bugs. Being an
expert in those tasks requires a certain set of skills, knowledge, and
experience. Several studies investigated individual aspects of soft-
ware development expertise, but what is missing is a comprehensive
theory. We present a first conceptual theory of software develop-
ment expertise that is grounded in data from a mixed-methods
survey with 335 software developers and in literature on exper-
tise and expert performance. Our theory currently focuses on pro-
gramming, but already provides valuable insights for researchers,
developers, and employers. The theory describes important prop-
erties of software development expertise and which factors foster
or hinder its formation, including how developers’ performance
may decline over time. Moreover, our quantitative results show
that developers’ expertise self-assessments are context-dependent
and that experience is not necessarily related to expertise.

https://empirical-software.engineering/projects/expertise/

ESEC?FSE
2018

Stephan Diehl

University of Trier
Trier, Germany
diehl@uni-trier.de

expert performance [78]. Bergersen et al. proposed an instrument to
measure programming skill [9], but their approach may suffer from
learning effects because it is based on a fixed set of programming
tasks. Furthermore, aside from programming, software develop-
ment involves many other tasks such as requirements engineering,
testing, and debugging [62, 96, 100], in which a software develop-
ment expert is expected to be good at.

In the past, researchers investigated certain aspects of software
development expertise (SDExp) such as the influence of program-
ming experience [95], desired attributes of software engineers [63],
or the time it takes for developers to become “fluent” in software
projects [117]. However, there is currently no theory combining
those individual aspects. Such a theory could help structuring exist-
ing knowledge about SDExp in a concise and precise way and hence
facilitate its communication [44]. Despite many arguments in favor
of developing and using theories [46, 56, 85, 109], theory-driven
research is not very common in software engineering [97].

Sebastian Baltes — Software Developers' Work Habits and Expertise

14

https://empirical-software.engineering/projects/expertise/

Software Development Expertise?

Implementing

Data
new features

structures

Testing

Communication

Debugging

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

15

Software Development Expertise?

S
java Implementing W= CE-EEE SR
new features ata o 1y b
structures © ©¢
Unit . ‘ybehave
J © Testing
&ﬂ Communication ti
>4 B8
" Debugging
O
O

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018) 16

]

y F g

PSR —— |

o | Which factors influence expertise

1 B .
} &% development over time?

3 »—-. ‘ h “ Ve, ¥ Q 2 -

o 4 o' 2 '}ﬁ}xgv' a 3 7 :

‘~ g' x‘ “ T 3 " g
My '?! ? 4 ‘

) *
oAl W
§ y o

870 P
: :

W, Ul g
I ;_‘;{f*\ a3

e

i W‘u v A v o :

How are experience and expertise related?
| o 8 |
B toll

Definitions

An expert is someone “with the special skill or
knowledge representing mastery of a particular
subject”

Expertise are ,the characteristics, skills, and
knowledge that distinguish experts from novices and
less experienced people.”

Merriam-

Webster

K. Anders Ericsson

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

20

— ®

g .
L= s
= o -
§

- e

T 5 L

How to structure the characteristics, skills,
knowledge, and experience that distinguish
expert software developers?

i

Our Expertise Model

° TaSk-SPECifiC (e.g., writing code, debugging, testing) : ‘ - I o

* Focuses on individual developers

*| Process view (rdpetition of tasks)

* Notion of transferable knowledge and experience
from related fields or tasks

* Continuum instead of discrete expertise steps

expert expert

C

novice novice

Theory Classification

* A process theory intends to explain and understand “how an entity
changes and develops” over time (Ralph, 2018)

* |n a teleological process theory, an entity “constructs an envisioned end

state, takes action to reach it, and monitors the progress” (van de Ven and Poole,
1995)

* Our theory:
* Entity:

Indli<vidual software developer working on different software development
tasks

* Envisioned end state:
Being an expert in (some of) those tasks

Research Design

Related » Focused Survey — Self-assessment
Work JavaDevs | analysis
Open Survey Deduction| (S2) 4
Conceptual)

Devs Inductionf Grounded
(S1) L Theory

L

\

J

L

| Conceptual }

Theory | J : | Theory Il
. Experienced 3
Devs (S3) | \"

\ J

|
Phase 1

|
' Phase 3

|
Phase 2
* Induction: 335 online survey participants in total
* Deduction: Main source “Cambridge Handbook of e

Expert Performance

Expertise and Expert Performance”

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

24

&

Research Design

The Oxford Handbook of Expertise &
Edited by Paul Ward, Jan Maarten Schraagen, Julie Gore, and Emilie M. Roth

Abstract

This handbook is currently in development, with individual articles publishing online in
advance of print publication. At this time, we cannot add information about unpublished
articles in this handbook, however the table of contents will continue to grow as
additional articles pass through the review process and are added to the site. Please
note that the online publication date for this handbook is the date that the first article in
the title was published online. For more information, please read the site FAQs.

Keywords: gifted, gited and talented, talent development, theories of intelligence, team expertise

xpertise development, team reflection, team reflexivity, team debriefing, aging, development

nowledge representation, skill, cognition, self-regulation, skill decay, skill retention, enhancing
Find at OUP.com retention, mitigating loss, training, expertise, skill acquisition, adaptable performance, transfer

skill reacquisition, experts, expertise, best practices, evidence-based performance, heuristics anc
Google biases, sociology, artificial intelligence

Preview
Bibliographic Information

ISBN: 9780198795872
DOI: 10.1093/oxfordhb/9780198795872.001.0001

Published online: Oct 2018

EDITORS

Paul Ward, editor
Paul Ward, University of
MNorthern Colerado, USA

Jan Maarten Schraagen,
editor

Jan Maarten Schraagen,
University of Twente,
Netherlands

Julie Gore, editor
Julie Gore, University More

7 1 |

e Deduction: Main source “Cambridge Handbook of
Expertise and Expert Performance”

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

THE CAMBRIDGE HANDBOOK OF

Expertise and
Expert Performance

25

[

The product

itself

[Work as challenge

Seeing
usage

Quality

[Personal priorities

Reward

Final Conceptual Theory

Designing
architecture

Debugging

Testing ‘

Algorithms and data ’ (Design and 1 (Programming 1
structures architectural patterns paradigms
Requirements | | Project
| management

engineering

feedback
General knowledge

generates

[

Helping

others

[Openness

[Agreeableness

[Conscientiousness

[Age-related decline

\Individual differences

§| Personality (FFM)
|_{ Mental abilities

%{ Skills

repetition ()

Motivation |<-
|
|
|

Problem-solving

Continuous
learning

Assessing

[Communication
‘ trade-offs

self-reflection

generates t fe
X ransfer :
Task \l Task-specific knowledge *
| | makes more/less
. ; affects
likely to acquire °
affect | ; P
g Behavior iy
o
makes more/less affects ®
Task context likely to acquire
| Task-specific experience *

transfer

feedback |

General experience

*l

monitoring

_

I

‘ Training ’[

Information

Team
exchange

’ Freedom ’ ‘
structure

Experi-

mentation

)

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

Time tracking

Issue tracking

Tool
support

Structure Peer-review]

Maintainability Static analysis]

Code Quality

Performance

Commit
frequency

LOC
added/deleted

Productivity

#lssues
resolved

Expected vs.
actual time

Project management]

Development diaries]

26

Final Conceptual Theory

| feedback
Mentoring™

Education

General knowledge

repetition
Individual differences P O

Motivation akes more/less| affects affects
lixely to acquire =
Personality (FFM) affect Bahavior .
A 1t
ikelv t : affects
Skills Task context ely 1o acquire | Affects

Task-specific experience™
transfer
General experience *

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

-
«

self-reflection feedback

monitoring

A 4

Knowledge

Knowledge is a “permanent structure of information stored in
memory” (Robillard, 1995)

Developer’s knowledge base considered (most) important factor
influencing performance (curtis, 1984)

Studies suggest that this knowledge base is “highly language
dependent”, but experts also have “abstract, transferable knowledge

and skills” (Sonnentag et al., 2006)

“Semantic” vs. “syntactical” knowledge (shneiderman and Mayer, 1978)

Knowledge

Knowledge is a “permanent structure of information stored in
memory” (Robillard, 1995)

Developer’s knowledge base considered (most) important factor
influencing performance (curtis, 1984)

Studies suggest tha FIFTEEN YEARS OF PSYCHOLOGY IN SOFTWARE ENGINEERING:
dependent”, but ey INDIVIDUAL DIFFERENCES AND COGNITIVE SCIENCE

O V4
and skills (Sonnentag ¢ ICSE 1984

BILL CURTIS (Orlando, FL, USA)
“Semantic” vs. “synt

Microelectronics and Computer Technology Corporation (MCC)
Austin, Texas

Knowledge

Knowledge about “paradigms [...], data
structures, algorithms, computational
complexity, and design patterns”

Education

General knowledge Mentoring
transfert enerates
affects
makes more/less| |
likely to acquire o|&
A 4 ~N| -
: N
Behavior —eat& alteCty pertormance
7y ol
makes more/less i
, . affects

Task-specific experience ™

r 3

transfer

A 4

General experience

*

An “intimate knowledge of the
design and philosophy of the
language”

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

30

Experience

* Many participants mentioned not only the quantity, but also the
quality of experience

Having shipped , a significant
amount of code to production or
to a customer”

Having built ,everything from small
projects to enterprise projects”

)

N o

Final Conceptual Theory

Individual differences

r 3

Motivation

Personality (FFM)

Mental abilities

Skills

self-reflection

| feedback
Education », General knowledge |« Mentoring™
generates transfer? generates
Task-specific knowledge * repetition ()
1 1 affects
makes more/less affects
likely to acquire o|&
ffect y N
aee — » Behavior %-8' affect Performance
r 3 a. 3
makes more/less i Sy
likely to acquire affects
Task context | /%€y quire | affects
Task-specific experience™
transfer | | «
General experience * monitoring

feedback

\ 4

Tasks

Asked participants to name the three most important tasks that a
software development expert should be good at

Most frequently mentioned: Tetizciing e GofiEe

1. Designing a software architecture in a way that allows
2. Writing source code flexibility in project
3. Analyzing and understanding requirements and future
requirements applications of the
components”

Other mentioned tasks: testing,
communicating, debugging

Q

'

|

-
2

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018) 33

o | Which factors influence expertise

1 B .
} &% development over time?

3 »—-. ‘ h “ Ve, ¥ Q 2 -

o 4 o' 2 '}ﬁ}xgv' a 3 7 :

‘~ g' x‘ “ T 3 " g
My '?! ? 4 ‘

) *
oAl W
§ y o

870 P
: :

W, Ul g
I ;_‘;{f*\ a3

e

Final Conceptual Theory

Individual differences

Motivation

Personality (FFM)

Mental abilities

Skills

self-reflection

| feedback
Education |\ » General knowledge |¢ Mentoring™
generates transfert generates
— tition
Task Task-specific knowledge * repetition ()
1 1 affects
makes more/less affects
likely to acquire o|&
\ 4 -~ :_
affect — » Behavior %-8' affect Performance
- a. 3
makes more/less i Sy
likely to acquire affects
Task context | /%€y quire | affects
Task-specific experience™
transfer | | «
feedback General experience * monitoring

Individual Differences: Motivation

Related work describes how individual differences affect expertise
development

Mental abilities and personality are relatively stable

Motivation can change over time

Many participants intrinsically motivated:
* Problem solving

* Seeing a high-quality solution

* Creating something new

* Helping others

“The initial design is fun, but
what really is more rewarding
is refactoring.”

-
|

Final Conceptual Theory

Individual differences

r 3

Motivation

Personality (FFM)

Mental abilities

Skills

self-reflection

feedback

A

| feedback
Education », General knowledge |« Mentoring™
generates transfert generates
Task Task-specific knowledge * repetition ()
1 1 affects
makes more/less affects
likely to acquire o|&
ffect y N
<lls » Behavior %-8' affects Performance
r 3 a. 3
makes more/less i Sy
likely to acquire affects
Task context || <€V quire | affects
Task-specific experience™
transfer | | «
General experience * monitoring

Task Context e

Work environment [why L,, |
D
el

(office, coworkers, customers etc.)

Project constraints
(external dependencies, time, etc.)

Can either foster or hinder expertise dev.
We asked: What can employers do?

1. Encourage learning

(training courses, library, monetary incentives)
2. Encourage experimentation

(side projects, being open to new ideas/technologies)
3. Improve information exchange

(facilitate meetings, rotating between teams/projects)
4. Grant freedom

(less time pressure)

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

38

8ud-g1xau02/60/¥10¢/speojdn/iuajuod-dm/30|q/wod ajiqowuliesy//:dny

Individual differences

Final Conceptual Theory

r 3

Motivation

Personality (FFM)

Mental abilities

Skills

self-reflection

| feedback
Education », General knowledge |« /I Mentoring™
generates transferl generates
Task Task-specific knowledge * repetition ()
1 affects
makes more/less affec
likely to acquire &
affect — » Behavior ' affects Performance
~
r 3 m
makes more/less o
likely to acquire affecty
Task context | /K€y quire | affects
Task-specific experience™

feedback

\ 4

transfer

A 4

General experience *

-
«

monitoring

Deliberate Practice

Having more experience does not automatically
lead to better performance (Ericsson et al., 1993) 3

Performance may even decrease over time (reltovich, 2006)

Length of experience only weak correlate of job performance (Ericsson,
2006)

Deliberate practice: ,Prolonged efforts to improve performance while
negotiating motivational and external constraints” (Ericsson et al., 1993)

Deliberate Practice: Self-Reflection

(Self-)reflection and feedback important to monitor
progress towards goal achievement (Locke and Latham, 1990)

“[TIhe more channels of accurate and helpful feedback

we have access to, the better we are likely to perform.”
(Tourish and Hargie, 2003)

38.7% of our participants reported that they regularly monitor their
software development activity

Mentors, teachers, and peers are an important sources for feedback

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018) 41

Final Conceptual Theory

Individual differences

r 3

Motivation

Personality (FFM)

Mental abilities

Skills

self-reflection feedback

General experience

Education > General knowledge « Mentoring
generates transfert generates
— tition
Task Task-specific knowledge * repetition ()
1 1 affects
makes more/less affects
likely to acquire o|&
\ 4 -~ :_
affect — » Behavior %-8' affects Performance
r 3 a. 3
makes more/less i Sy
likely to acquire affects
Task context | /%€y quire | affects
Task-specific experience™
transfer | | «
*

Final Conceptual Theory

Individual differences

Motivation

r 3

Personality (FFM)

Mental abilities

Skills

self-reflection

Task context

Task-specific experience™

a

| feedback
Education », General knowledge |« Mentoring™
generates transfert generates
Task Task-specific knowledge * repetition ()
)) affects
makes more/less affects
likely to acquire o|&
affect * S| S affect
» Behavior -
" < -E | Performance
A (o) Q)
makes more/less i Sy
: : affects
likely to acquire | Affects

-
«

feedback

\ 4

transfer |

General experience *

monitoring

Performance

FAIR
o So
y ‘

S %
= 2
P s
& Z
g =

* We do not treat performance as a dependent variable that we try to
explain or predict for individual tasks

Scope of this work:

 We consider different performance monitoring approaches to be a
means for feedback and self-reflection

Long-term goal:

* Build variance theory for explaining and predicting the development
of expertise

Performance

Participants described different properties of expert’s source code
(well-structured, readable, maintainable, etc.)

,Everyone can write [...] code which a machine can
read and process but the key lies in writing concise
and understandable code which [...] people who

have never used that piece of code before [can
read].”

Q

'

-
[

|

Expert Performance 20

R
Go,
*

S %
g <
A [
g 2
N 2

* In some areas (e.g., chess), there exist representative tasks and
objective criteria for identifying experts

e Software development includes many different tasks

 Much more difficult to find objective measures for quantifying
software development expert performance

Performance Decline

Goal: Identify factors hindering expertise development

41.5% of participants observed a significant performance decline over
time (for themselves or others)

Reasons:

Demotivation

Changes in the work environment
Age-related decline

Changes in attitude

Shifting towards other tasks

“I perceived an increasing
procrastination in me and in my
colleagues, by working on the
same tasks over a relatively long
time [...] without innovation
and environment changes.”

)

|

Age-Related Performance Decline

“For myself, it’s mostly the effects of aging on
the brain. At age 66, I can’t hold as much
information short-term memory, for example.
[...] | can compensate for a lot of that by writing
simpler functions with clean interfaces. The
results are still good, but my productivity is
much slower than when | was younger.”

B
Y4

software architect, age 66

“Programming ability is based on
desire to achieve. In the early years, it
is a sort of competition. [...] | found
that | lost a significant amount of my
focus as | became 40, and started
using drugs such as ritalin to enhance
my abilities. This is pretty common
among older programmers.”

~
A

N

software developer, age 60

i W‘u v A v o :

How are experience and expertise related?
| o 8 |
B toll

Experience vs. Expertise

* Self-assessment with semantic differential (novice to expert) and
Dreyfus expertise model

* More experienced developers adjusted their ratings when
context was provided, less experienced not

Sample 2 Sample 3

1 - r I E—

2 3 4 5
I

2 3 4 5
I

—— c—— —_—

| | | |
Sem.Dif. Dreyfus Sem.Dif. Dreyfus

1
I
1
I

Experience vs. Expertise

* Analyzed correlation of experience (years) and self-assessed
expertise and found no consistent results

* Possible explanation: Dunning-Kruger effect
* Participants with a high skill-level underestimate their ability
and performance relative to their peers
* Context helped experienced developers to adjust their ratings
to be more accurate

90
80 -
70
60

3
& 40

®

Experience vs. Expertise

Journal of Personality and Social Psychology Copyright 1999 by the American Psychological Association, Inc.
1999, Vol. 77, No. 6, 1121-1134 0022-3514/99/$3.00

Unskilled and Unaware of It: How Difficulties in Recognizing One’s Own
Incompetence Lead to Inflated Self-Assessments

Justin Kruger and David Dunning

Cornell University

People tend to hold overly favorable views of their abilities in many social and intellectual domains. The
authors suggest that this overestimation occurs, in part, because people who are unskilled in these
domains suffer a dual burden: Not only do these people reach erroneous conclusions and make
unfortunate choices, but their incompetence robs them of the metacognitive ability to realize it. Across 4
studies, the authors found that participants scoring in the bottom quartile on tests of humor, grammar, and
logic grossly overestimated their test performance and ability. Although their test scores put them in the
12th percentile, they estimated themselves to be in the 62nd. Several analyses linked this miscalibration
to deficits in metacognitive skill, or the capacity to distinguish accuracy from error. Paradoxically,
improving the skills of participants, and thus increasing their metacognitive competence, helped them
recognize the limitations of their abilities.

20 | =l Perceived Ability
o ~—ae—Perceived Test Score
10 L4

—&--Actual Test Score

Bottom 2nd 3rd Top
Quartile Quartile Quartile Quartile

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

52

k/news/weird-news/how-mcdonalds-takeaway-bag-ended-9664800

Summary for Researchers

Can use our results when designing studies involving expertise self-
assessments or our theory building approach

Clear understanding what distinguishes novices and experts: Provide
this context when asking for self-assessed expertise and later report it
together with the results

Can use theory to design experiments (first operationalizations
described in paper)

Future Work: Operationalization, develop standardized descripti
novice and expert for certain tasks

Summary for Developers

* See which attributes other developers assign to experts

e Learn which behaviors may lead to becoming a better software
developer:

e Deliberate practice

* Have challenging goals

* Build or maintain a supportive work environment
(also for others)

Ask for feedback from peers

Reflect about what one knows and what not

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

Summary for Employers

e Learn what (de)motivates their employees:
* Main motivation: problem solving
* Main demotivation: non-challenging work

* |deas on how to build supportive work environment supporting self-
improvement of staff:

* Good mix of continuity and change in software development process
e Communicate clear visions, directions, and goals @

* Reward high-quality work wherever possible

* Revisit information sharing in company

* Facilitate meetings

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

56

[The product
itself

[Work as challenge

[Personal priorities

Designing
architecture

Debugging

[Algorithms

and data Design and
structures architectural patterns

Programming
paradigms

[

Requirements]

engineering

Writing code

J Project]

| management

feedback
General knowledge

generates

generates transfer

usage
Reward
Helping
[ofhers [Openness

[Agreeableness J\
[Conscientiousness]//

[Age-related decline]/

§| Personality (FFM)

Task

affect

\‘ Task-specific knowledge *

makes more/less
likely to acquire

2
| Behavior
| ~

affects
T

|| Mental abilities

Skills

Problem-solving

Communication

learning

Assessing
trade-offs

[

[-

[Continuous
[

self-reflection

Individual differences
Motivation |<-—
|
|
|

Task context likely to acquire

99,

makes more/less
affects

| Task-specific experience *

repetition ()

Structure

Peer-review]

Maintainability

Code Quality

Productivity

feedback

transfer

| General experience *|

monitoring

{ Training J [structure

mentation

Team }[Information]‘ Ereedom ’ [Experi- ’

exchange

Sebastian Baltes

@s_balt
es

Performance

Commit
frequency

LOC
added/deleted
#lssues
resolved
Expected vs.
actual time

Time tracking

Project management J

Tool
support

Issue tracking

Development diaries]

expertise.sbaltes.com

Data and scripts available on Zenodo

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

57

= »

¥ 4 VI
. ﬁ",«é".

“Parallel Thread”

Issues in Sampling
Software Developers

(Q) airbnb
Methodology

2013 Constructing Urban
Tourism Space Digitally

U Y Interdisciplinary Research
Open Data ’

=) SOTorrent &g 2018

Sebastian Baltes — Software Developers' Work Habits and Expertise 59

‘ .
|§\|\ SOTorrent -

Studying the Origin, Evolution, and Usage
of Stack Overflow Code Snippets

Sebastian Baltes sotorrent.org
YW @s_balt

es

Dataset available on Zenodo and BigQuery

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

60

SOTorrent: Reconstructing and Analyzing the Evolution of

Corresponding Research Papers

Stack Overflow Posts

Sebastian Baltes
Lorik Dumani
research@sbaltes.com
dumani@uni-trier.de
University of Trier, Germany

ABSTRACT

Stack Overflow (SO) is the most popular questic
site for software developers, providing a larg
snippets and free-form text on a wide variety ¢
software artifacts, questions and answers on S
for example when bugs in code snippets are fix
to work with a more recent library version, or
code snippet is edited for clarity. To be able to a
on SO evolves, we built SOTorrent, an open d:
official SO data dump. SOTorrent provides acces
tory of SO content at the level of whole posts ar
code blocks. It connects SO posts to other platfo

URLs from text blocks and by collecting refer
£l A WAy 4 1 al A H —

Christoph Treude
christoph.treude@adelaide.edu.au
University of Adelaide, Australia

SOTorrent: Studying the Origin, Evolution, and
Usage of Stack Overflow Code Snippets

Sebastian Baltes
University of Trier, Germany
research@ sbaltes.com

Abstract—Stack Overflow (SO) is the most popular question-
and-answer website for software developers, providing a large
amount of copyable code snippets. Like other software artifacts,
code on SO evolves over time, for example when bugs are fixed
or APIs are updated to the most recent version. To be able
to analyze how code and the surrounding text on SO evolves,
we built SOTorrent, an open dataset based on the official SO
data dump. SOTorrent provides access to the version history of
SO content at the level of whole posts and individual text and
code blocks. It connects code snippets from SO posts to other
platforms by aggregating URLs from surrounding text blocks
and comments, and by collecting references from GitHub files
to SO posts. Our vision is that researchers will use SOTorrent
to investigate and understand the evolution and maintenance of
code on SO and its relation to other platforms such as GitHub.

Stephan Diehl
diehl@uni-trier.de
University of Trier, Germany

Christoph Treude
University of Adelaide, Australia
christoph.treude @adelaide.edu.au

Stephan Diehl
University of Trier, Germany
diehl @uni-trier.de

dataset [16] that enables researchers to analyze the versigf
history of SO posts at the level of individual text and cog
blocks (see Figure 1 for exemplary posts). The official §
data dump [1] keeps track of different versions of ey
posts, but does not contain information about diffe 7
between versions at a more fine-grained level. In partic
extracting different versions of the same code snippet trom
the history of a post is challenging and required us to develep

a complex strategy, involving the ev.
string similarity metrics [15]. Beside
version history, our dataset links SO p
in two ways: (1) by extracting linke:
of SO posts and from post commen|

N

MSR 2018/2019

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

61

N\
oo
- : «

“B /d

4 N
MSR Mining Challenge 2019

Abstracts due Feb 1, 2019

B Papers due Feb 6, 2019 y
Sebastian Baltes sotorrent.org
@s_balt

Dataset available on Zenodo and BigQuery
es

= »

¥ 4 VI
. ﬁ",«é".

Studied Habits

k- D
f\f}gl%ﬁ O a"al
Sketches and _ | i =1
2013 Diagrams in Sketching How Developers Locate Towards a Theory of
— - Practice Performance Bugs Software Development
Expertise
Expertise Development
SketchLink LivelySketches
Code Plagiarism 2018
S\

stackoverflow Code Snippets
in GitHub Projects

Sebastian Baltes — Software Developers' Work Habits and Expertise 64

[The product
itself

[Work as challenge

[Personal priorities

Designing
architecture

Debugging

[Algorithms

and data Design and
structures architectural patterns

Programming
paradigms

[

Requirements]

engineering

Writing code

J Project]

| management

feedback
General knowledge

generates

generates transfer

usage
Reward
Helping
[ofhers [Openness

[Agreeableness J\
[Conscientiousness]//

[Age-related decline]/

§| Personality (FFM)

Task

affect

\‘ Task-specific knowledge *

makes more/less
likely to acquire

2
| Behavior
| ~

affects
T

|| Mental abilities

Skills

Problem-solving

Communication

learning

Assessing
trade-offs

[

[-

[Continuous
[

self-reflection

Individual differences
Motivation |<-—
|
|
|

Task context likely to acquire

99,

makes more/less
affects

| Task-specific experience *

repetition ()

Structure

Peer-review]

Maintainability

Code Quality

Productivity

feedback

transfer

| General experience *|

monitoring

{ Training J [structure

mentation

Team }[Information]‘ Ereedom ’ [Experi- ’

exchange

Sebastian Baltes

@s_balt
es

Performance

Commit
frequency

LOC
added/deleted
#lssues
resolved
Expected vs.
actual time

Time tracking

Project management J

Tool
support

Issue tracking

Development diaries]

expertise.sbaltes.com

Data and scripts available on Zenodo

Sebastian Baltes — Towards a Theory of Software Development Expertise (ESEC/FSE 2018)

65

