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Abstract Analyzing and understanding software developers’ work habits and
resulting needs is an essential prerequisite to improve software development
practice. In our research, we utilize different qualitative and quantitative research
methods to empirically investigate three underexplored aspects of software devel-
opment: First, we analyze how software developers use sketches and diagrams
in their daily work and derive requirements for better tool support. Then, we
explore to what degree developers copy code from the popular online platform
Stack Overflow without adhering to license requirements and motivate why this
behavior may lead to legal issues for affected open source software projects. Finally,
we describe a novel theory of software development expertise and identify factors
fostering or hindering the formation of such expertise. Besides, we report on
methodological implications of our research and present the open dataset SOTorrent,
which supports researchers in analyzing the origin, evolution, and usage of content
on Stack Overflow. The common goal for all studies we conducted was to better
understand software developers’ work practices. Our findings support researchers
and practitioners in making data-informed decisions when developing new tools or
improving processes related to either the specific work habits we studied or expertise
development in general.

1 Introduction

A work habit, which is a “settled tendency or usual manner of behavior,” can
positively or negatively influence software developers’ daily work. Knowing and
understanding such work habits and resulting needs is an essential prerequisite
to improve the existing software development processes and tools. However, the
software engineering research community is often criticized for not addressing the
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problems that practitioners actually face during their work [1]. At the same time,
software developers’ beliefs are rather based on their personal experience than on
empirical findings [2]. To fill this gap between academia and practice, we conducted
several empirical studies investigating different aspects of software developers’
work habits and expertise.

While the goal guiding all empirical studies we conducted was to gain a better
understanding of software developers’ work practices, we drew different conclu-
sions for each of the studied phenomena: Based on our results, we developed novel
tool prototypes to better support software developers’ sketching and diagramming
workflows, we reached out to developers to make them aware of possible licensing
issues in their software projects due to code copied from Stack Overflow, and we
provide recommendations for researchers, developers, and employers how to utilize
our findings on software development expertise and its formation.

For the first part of this research project (see Sect.2), we studied how software
developers use sketches and diagrams in their daily work. At the time we started
our research, an overall picture of developers’ work habits related to the creation
and usage of sketches and diagrams was missing. To fill this gap, we conducted
an exploratory field study in different software companies, an online survey with
software practitioners, and an observational study with software developers. We
found that developers frequently create and use sketches and diagrams and that
they consider many of those visual artifacts to be helpful in understanding related
source code. However, we also identified a lack of tool support to archive and
retrieve sketches and diagrams documenting different aspects of software systems.
Thus, based on our findings, we derived requirements to better support developers’
sketching and diagramming workflows and implemented those requirements in two
tool prototypes, named SketchLink and LivelySketches, which we then evaluated in
formative user studies.

The second part (see Sect.3) presents an extensive empirical study on a rather
negative work habit: We investigated to what degree developers adhere to Stack
Overflow’s license requirements when copying code snippets published on that
platform—or, in other words, to what extent they commit code plagiarism. Since
many developers use the online question-and-answer platform Stack Overflow on
a daily basis [3], it is an essential part of their daily work life. If developers copy
code snippets from that platform into their open source software projects without
adhering to the corresponding license requirements, legal issues may arise. After
describing the legal situation around Stack Overflow code snippets, we give a
first estimate of how frequently developers copy such snippets into public GitHub
projects without the required attribution, provide an analysis of licensing conflicts,
and present results from an online survey, which suggest that many developers are
not aware of the licensing situation and its implications. Besides publishing our
empirical results, we reached out to owners of open source GitHub projects to make
them aware of possible licensing conflicts in their projects.

In the third part of this research project (see Sect. 4), we present a first conceptual
theory of software development expertise that is grounded in the related literature
and three online surveys with software developers. The connection to work habits
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is that, by learning from past experience, developers may adapt their work habits
over time. Moreover, the existing habits related to self-improvement and learning
may shape the path of an individual from being a novice toward being an expert in
software development. Previously, the software engineering research community
was lacking a comprehensive theory on what constitutes software development
expertise and how such expertise is formed. Our theory describes important
properties of software development expertise and factors fostering or hindering its
formation, including how developers’ performance may decline over time. Based
on that theory, we provide recommendations for researchers who want to study
expertise formation, developers who want to improve their software development
skills, and employers who want to build a work environment supporting expertise
development of their staff.

While the first three sections describe the main contributions of this research
project, in Sect. 5, we reflect on methodological and ethical issues we faced when
sampling software developers for the online surveys we conducted. The goal of
that chapter is to inform the research community which strategies worked best for
us, but we also want to start a discussion about the ethics of different sampling
strategies that researchers currently use. To conclude this article, and to corroborate
our open data efforts, we present the open dataset SOTorrent, which we created in
the context of our research on Stack Overflow code snippets, described in Sect. 3.
Besides explaining how we built the dataset, we use it to conduct a first analysis of
the evolution of content on Stack Overflow and to investigate code snippets copied
from external sources into Stack Overflow and duplicates of code snippets within
Stack Overflow. We continue to maintain the dataset to support further research on
the origin, evolution, and usage of content on Stack Overflow.

2 Sketching: Developers’ Usage of Sketches and Diagrams
in Practice

purpose revision

effort \ / lifespan
medium b // archiving
sketch

context — — formality

contributors \ UML elements
relation to source code

Fig. 1 The 11 dimensions of a sketch or diagram in software development that we used to structure
and guide our research
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Communication is omnipresent in software development. Requirements are
communicated from prospective users to the developers implementing the software,
the general architecture is communicated within the development team, developers
communicate with each other during pair programming, and after deployment,
issues are reported back to developers. Such information flows involve diverse
channels [4], including face-to-face communication [5, 6], email [7], videoconfer-
encing [5, 6], and team collaboration tools [8]. Especially in collocated settings,
developers use informal sketches and diagrams for communication [9]. Those visual
artifacts, spanning different types of media [10], support developers in designing
new and understanding existing software systems [11]. Nevertheless, when we
started our research on sketches and diagrams in software development practice, an
overall picture of how developers use those visual artifacts was missing. Therefore,
in the corresponding chapter of the dissertation, we first motivate our notion of
sketch dimensions to capture the most important characteristics of visual artifacts
used in software development (see Fig. 1) and then present the design and results
of a mixed-methods study we conducted to investigate how software practitioners
use such artifacts. Our research included an exploratory field study in three different
software companies, an online survey with 394 participants, and an observational
study with six pair programming teams. After describing the state of practice and
resulting needs of software practitioners working with sketches and diagrams, we
present two tool prototypes that we developed in response to the results of our
empirical investigation. The content of this chapter is based on four peer-reviewed
publications [10, 12, 13, 14].

Contributions

* A characterization of sketches and diagrams in software development practice,
which is grounded in related work and in a field study we conducted in three
different software companies.

* An assessment of 11 different dimensions of sketches and diagrams in software
development using an online survey with 394 software practitioners.

* An analysis how developers communicate in a pair-programming setting when
locating performance bugs, including an investigation of the role of sketches
in this scenario.

* A presentation of two tool prototypes supporting software developers’ sketching
and diagramming workflows.

Overall, we found that software practitioners frequently create and use such
visual artifacts. Our online survey revealed that sketches and diagrams are often
informal but are considered to be a valuable resource, documenting many aspects
of the software development workflow. We showed how sketches are related to
source code artifacts on different levels of abstraction and that roughly half of
them were rated as helpful to understand the source code. As documentation is
frequently poorly written and out of date, sketches could fill in this gap and serve
as a supplement to conventional documentation such as source code comments
or other textual resources. The majority of sketches and diagrams were created
on analog media such as paper or whiteboard. Many of them were archived, but
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our survey participants also named technical issues, for example, that there is no
good technique to keep (digital versions of) sketches together with source code. In
response to this observation, we developed the tool prototype SketchLink, which
assists developers in archiving and retrieving sketches related to certain source
code artifacts. Regarding the evolution of sketches, our qualitative results indicated
that it is a common use case for sketches to be initially created on analog media
like paper or whiteboards and then, potentially after some revisions, they end up
as an archived digital sketch. To support such workflows, we developed a second
tool prototype named LivelySketches, which supports transitions from analog to
digital media and back. One direction for future work is to merge the features of
both prototypes and evaluate the resulting tool in larger context. Moreover, with
techniques such as graphic facilitation and sketchnoting becoming more and more
popular, analyzing potential use cases for those techniques in software development
projects emerged as another direction for future work. We already interviewed
graphic facilitators who worked in software development projects, but also software
developers and architects with sketching experience. Based on those interviews,
we will derive recommendations for applying visualization techniques in different
phases of software development projects.

3 Code Plagiarism: Stack Overflow Code Snippets in GitHub
Projects

Stack Overflow is the most popular question-and-answer website for software
developers, providing a large amount of copyable code snippets. Using those
snippets raises maintenance and legal issues. Stack Overflow’s license (CC BY-
SA) requires attribution, that is referencing the original question or answer, and
requires derived work to adopt a compatible license. While there is a heated debate
on Stack Overflow’s license model for code snippets and the required attribution,
little is known about the extent to which snippets are copied from Stack Overflow
without proper attribution. To fill this gap, we conducted a large-scale empirical
study analyzing software developers’ usage and attribution of non-trivial Java code
snippets from Stack Overflow answers in public GitHub projects. We followed
three different approaches to triangulate an estimate for the ratio of unattributed
usages and conducted two online surveys with software developers to complement
our results. For the different sets of GitHub projects that we analyzed, the ratio
of projects containing files with a reference to Stack Overflow varied between 3.3
and 11.9%. We found that at most 1.8% of all analyzed repositories containing code
from Stack Overflow used the code in a way compatible with CC BY-SA. Moreover,
we estimate that at most a quarter of the copied code snippets from Stack Overflow
are attributed as required. Of the surveyed developers, almost one half admitted
copying code from Stack Overflow without attribution and about two-thirds were
not aware of the license of Stack Overflow code snippets and its implications.
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The content of this chapter is based on a peer-reviewed journal publication [15].
Moreover, some results have also been published in an extended abstract before [16].

Contributions

e A thorough description of the legal situation around Stack Overflow code
snippets.

e A triangulated estimation of the attribution ratio of Stack Overflow code
snippets in public GitHub projects.

* An analysis of possible licensing conflicts for the GitHub projects containing
code from Stack Overflow.

* A qualitative analysis of how developers refer to Stack Overflow content.

* An online survey suggesting that many developers are not aware of the
licensing of Stack Overflow code snippets and its implications.

Our research revealed that at most one quarter of the code snippets copied
from Stack Overflow into public GitHub Java projects are attributed as required
by Stack Overflow’s license (CC BY-SA). Moreover, we found that between 3.3
and 11.9% of the analyzed GitHub repositories contained a file with a reference to
Stack Overflow (see Table 1). We identified only 1.8% of the GitHub projects with
copies of Stack Overflow code snippets to attribute the copy and to use a license
that is share-alike compatible with Stack Overflow’s license. For the other 98.2%
of the projects, especially the share-alike requirement of CC BY-SA may lead to
licensing conflicts. Two online surveys have shown that many developers admit
copying code from Stack Overflow without attribution. We also found that many
of them are not aware of the licensing situation and its implications. In the course
of our research on Stack Overflow code snippets, we built the SOTorrent dataset
(see Sect. 6), which we continue to maintain. Beside closely following how other
researchers use the dataset to study different questions related to code on Stack
Overflow, we will continue to investigate how such code snippets are maintained
and how their evolution can be better supported. Another direction for future work,
which is not limited to Stack Overflow, is to build better tool support for developers
dealing with online code snippets. On the one hand, continuous integration tools
could check whether commits add non-trivial code snippets from online resources
to a project; on the other hand, tools could support developers in understanding
license compatibility not only for whole software libraries, but also on the level
of individual code snippets copied from online resources. Those efforts can help
mitigating legal threats for open source projects that intentionally or unintentionally
use code from diverse sources.
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Table 1 Summary of results regarding attribution of snippets copied from Stack Overflow (SO):
distinct references to answers (A) or questions (Q) on SO in the Java files from GitHub analyzed
in each phase of our research; number of analyzed files and repositories, files/repos containing a
reference to SO, files/repos containing a copy of a SO snippet, attributed copies of SO snippets

References Files Repositories
Ph. A Q Count  Ref Copy Attr Count  Ref Copy
1 5014 16,298 133m 18,605 4198 402 336k 11,086 3291
23.5% 76.5% 0.09% 0.03% 9.6% 3.3% 1.0%
2 209 463 445k 634 297 70 2313 274 199
31.1% 68.9% 0.14% 0.07% 23.6% 11.9%  8.6%
3 1551 4843 1.7m 5354 1369 104 64,281 3536 1332
243%  75.7% 031% 0.08% 7.6% 5.5% 2.1%

4 Expertise Development: Toward a Theory of Software
Development Expertise

Software development includes diverse tasks such as implementing new features,
analyzing requirements, and fixing bugs. Being an expert in those tasks requires
a certain set of skills, knowledge, and experience. Several studies investigated
individual aspects of software development expertise, but what is missing is a com-
prehensive theory. In this chapter, we present a first conceptual theory of software
development expertise that is grounded in data from a mixed-methods survey with
335 software developers (see gray boxes in Fig. 2) and in the literature on expertise
and expert performance. Our theory currently focuses on programming but already
provides valuable insights for researchers, developers, and employers. The theory
describes important properties of software development expertise and which factors
foster or hinder its formation, including how developers’ performance may decline
over time. Moreover, our quantitative results show that developers’ expertise self-
assessments are context-dependent and that experience is not necessarily related to
expertise. The content of this chapter is based on a peer-reviewed publication [17].

Contributions

* A first conceptual theory of software development expertise grounded in a
survey with 335 software developers and in the literature on expertise and expert
performance.

* Quantitative results that point to the context-dependence of software develop-
ers’ expertise self-assessments.

* A theory-building approach involving inductive and deductive steps that other
(software engineering) researchers can apply or adapt (see Fig. 2).

With our research, we identified different characteristics of software develop-
ment experts, but also factors fostering or hindering the formation of software
development expertise. Besides building a first conceptual theory, we found that
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expertise self-assessments are context-dependent and do not always correspond to
experience measured in years. Researchers can use our findings when designing
studies involving expertise self-assessments. We recommend to explicitly describe
what distinguishes novices from experts in the specific setting under study when
asking participants for expertise self-assessments. Our theory enables researchers to
design new experiments, but also to re-evaluate results from previous experiments.
Software developers can use our results to learn which properties are distinctive
for experts in their field, and which behaviors may lead to becoming a better
software developer. For example, the concept of deliberate practice, and in particular
having challenging goals, a supportive work environment, and getting feedback
from peers are important factors. For “senior” developers, our results provide
suggestions for being a good mentor. Mentors should know that they are considered
to be an important source for feedback and motivation, and that being patient and
being open-minded are desired characteristics. We also provide first results on the
consequences of age-related performance decline, which is an important direction
for future work. Employers can learn what typical reasons for demotivation among
their employees are, and how they can build a work environment supporting the
self-improvement of their staff. Besides obvious strategies such as offering training
sessions or paying for conference visits, our results suggest that employers should
think carefully about how information is shared between their developers and
also between development teams and other departments of the company. Finally,
employers should make sure to have a good mix of continuity and change in their
software development process because non-challenging work, often caused by tasks
becoming routine, is an important demotivating factor for software developers. One
important direction for future work, which emerged in the course of our research,
is the role of older software developers. Especially in industrialized countries, the
demographic change leads to an older work force, since people are expected to
retire later. Still, the challenges that older developers face in a competitive field
like software development are largely unknown. Our study participants already
mentioned different age-related challenges. We plan to study those challenges to
be able to mitigate them where possible, preventing those experienced developers
from dropping out of software development.
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Fig. 2 Structure of our iterative theory-building approach
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5 Methodological Insights: Issues in Sampling Software
Developers

Online surveys like the ones we conducted for this research project are considered to
be a feasible means for investigating the state of practice [18]. In particular, surveys
are an important empirical method used in software engineering (SE) research
that can be employed to explore and describe various characteristics of a broad
population [19]. However, reaching professional software developers with surveys is
a difficult task. Except for single companies or institutions that allow researchers to
use a list of their employees, random sampling of software developers is impossible
most of the time. Researchers therefore often rely on the available subjects, which
is known as convenience sampling. Applying non-random sampling techniques like
convenience sampling may lead to biased samples with limited external validity.
To mitigate the threats to external validity, researchers need detailed knowledge
about the population of software developers they want to target, but this information
is often not available. Further, some of the sampling techniques that researchers
employ raise ethical concerns, such as contacting developers on GitHub using email
addresses users did not provide for this purpose. In this chapter, we summarize what
we learned while conducting online surveys with software developers. The content
of this chapter is based on a peer-reviewed publication [20].

Contributions

* Experience reports for different survey sampling strategies.

¢ Presentation of the idea of a systematic database with software developer
demographics to assess the external validity of surveys conducted using non-
random sampling techniques.

* Building awareness about ethical issues that may arise with sampling approaches
that researchers currently utilize.

We found that the most efficient and effective sampling strategies were to use
public media and “testimonials” that advertise the survey. We also highlighted
the importance of gatekeepers who provide access to companies or communities.
Another finding is that, to be able to assess the external validity of studies involving
non-random samples, researchers need a collection of typical software developer
demographics, which currently does not exist. Using a systematic literature review,
one could collect published demographics about developers. Further, authors of
studies with software developers could be contacted and asked to provide basic
demographic information about their participants, if available. This information,
together with the data from the Stack Overflow developer surveys, would be a solid
basis to assess the external validity of future studies. Conferences and journals may
recommend authors to describe certain key demographics for published studies, and
reviewers could motivate authors to explicitly address their sampling approach and
effects on the generalizability of their results. We also pointed at ethical issues with
some of the sampling techniques researchers currently employ, in particular using
email addresses collected from GitHub to contact developers.
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6 Open Data: Building and Maintaining the SOTorrent
Dataset

For all studies conducted in the context of this research project, we provide
supplementary material packages that enable other researchers to reproduce our
results. Besides publishing (anonymized) data on the preserved archive Zenodo,
we also published the software and scripts used to retrieve and analyze that data.
Moreover, pre- or postprints of all papers are available online. Beside these general
open science efforts, in this chapter, we want to particularly highlight the open
dataset SOTorrent' that we created to support future research about code snippets
on Stack Overflow. The dataset allows researchers to investigate and understand the
evolution of Stack Overflow content on the level of individual text and code blocks,
which is not possible with the official data dump that Stack Overflow provides.
Beside supporting our own research, we published and promoted the dataset to be
used by other researchers. Those efforts resulted in the dataset being selected as the
official mining challenge of the 16th International Conference on Mining Software
Repositories (MSR 2019) [21].

The content of this chapter is based on two peer-reviewed publications: One full
paper describing the creation of SOTorrent and first analyses using the dataset [20]
as well as our accepted mining challenge proposal [21]. Moreover, we present
additional analyses that we conducted for an upcoming journal extension of our
initial SOTorrent paper (see research questions three and four).

Contributions

* An open dataset that allows researchers to investigate and understand the
evolution of Stack Overflow posts and their relation to other platforms such as
GitHub.

* A thorough evaluation of 134 string similarity metrics regarding their appli-
cability for reconstructing the version history of Stack Overflow text and code
blocks.

* A first analysis of the evolution of content on Stack Overflow, including the
description of a close relationship between post edits and comments.

* An analysis of code clones on Stack Overflow together with an investigation of
possible licensing risks.

The SOTorrent dataset has allowed us to study the phenomenon of post editing
on SO in detail. We found that a total of 13.9 million SO posts (36.1% of all posts)
have been edited at least once. Many of these edits (44.1%) modify only a single
line of text or code, and while posts grow over time in terms of the number of
text and code blocks they contain, the size of these individual blocks is relatively
stable. Interestingly, only in 6.1% of all cases are code blocks changed without
corresponding changes in text blocks of the same post, suggesting that SO users

Thttp://sotorrent.org.
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typically update the textual description accompanying code snippets when they are
edited. We also found that edits are mostly made shortly after the creation of a post
(78.2% of all edits are made on the same day when the post was created), and the
vast majority of edits are made by post authors (87.4%)—although the remaining
12.6% will be of particular interest for our future work. The number of comments on
posts without edits is significantly smaller than the number of comments on posts
with edits, suggesting an interplay of these two features. We find evidence which
suggests that commenting on a post on SO helps to bring attention to it. Of the
comments that were made on the same day as an edit, 47.9% were made before an
edit and 52.1% afterwards, typically (median value) only 18 min before or after the
edit. Motivated by this quantitative analysis of the temporal relationship between
edits and comments, we conducted a qualitative study and developed a visual
analysis tool to explore the communication structure of SO threads. Our analysis
using this tool revealed several communication and edit patterns that provide further
evidence for the connection between post edits and comments. We found comments
which explain, trigger, and announce edits as well as content overlap between edits
and comments. The fact that SO users rely on the commenting feature to make others
aware of post edits—and in some cases even duplicate content between comments
and posts—suggests that users are worried that content evolution will be missed if
it is buried in a comment or has been added to a post later via an edit. At the same
time, we found evidence that edits can play a vital role in attracting answers to a
question. In our future work, we will explore how changes to Stack Overflow’s user
interface could make the evolution of content more explicit and remove the need for
users to repurpose the commenting feature as an awareness mechanism. Besides, we
investigated code clones on SO, revealing that, just like in regular software projects,
code clones on SO can affect the maintainability of posts and lead to licensing
issues. Depending on the outcome of the discussion we started on Stack Overflow
Meta, we plan to implement means to add the missing attribution to posts and mark
threads as related based on the similarity of the code blocks they contain.

7 Summary and Future Work

In this research project, we utilized diverse research designs to empirically investi-
gate yet underexplored aspects of software developers’ work habits and expertise.
We started by analyzing how developers use sketches and diagrams in their daily
work, then derived requirements for tool support, and finally implemented and
evaluated two tool prototypes. In a second research project, we investigated how
common it is for developers to copy non-trivial code snippets from the popular
question-and-answer platform Stack Overflow into open source software projects
hosted on GitHub, without adhering to the terms of Stack Overflow’s license. In
that project, we also assessed developers’ awareness of the licensing situation and its
implications. While those first two research projects can be regarded as analyses of a
rather positive and a rather negative work habit, the third project aimed at analyzing
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behaviors that may lead to developers becoming experts in certain software develop-
ment tasks. However, we not only identified factors influencing expertise formation
over time but also developed a first conceptual theory structuring the broad concept
of software development expertise.

In the complete version of the dissertation that this article is based on, we not only
present the designs and results of the different empirical studies we conducted, but
also highlighted how we use those results to guide further actions. We already used
our empirical results to: (1) motivate and implement novel tools to support software
developers’ sketching workflows, (2) inform developers about possible licensing
issues in their open source software projects, (3) build a first conceptual theory of
software development expertise that researchers as well as practitioners can use,
(4) point to the underexplored phenomenon of age-related performance decline, (5)
grow awareness in the research community about ethical implications of certain
sampling strategies, motivated by participants’ feedback, and (6) create an open
dataset that the research community can use for future research projects on Stack
Overflow content. Our work supports researchers and practitioners in making data-
informed decisions when developing new tools or improving processes related to
either the specific work habits we studied or expertise development in general.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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