
Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’
Work Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and Expertise
Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,

and Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Development

Sebastian BaltesSebastian BaltesSebastian BaltesSebastian BaltesSebastian BaltesSebastian BaltesSebastian BaltesSebastian BaltesSebastian BaltesSebastian BaltesSebastian BaltesSebastian BaltesSebastian BaltesSebastian BaltesSebastian BaltesSebastian BaltesSebastian Baltes

Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’Software Developers’
Work Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and ExpertiseWork Habits and Expertise
Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,Empirical Studies on Sketching, Code Plagiarism,

and Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Developmentand Expertise Development

DISSERTATION zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

im Fachbereich IV der Universität Trier

vorgelegt von

Sebastian Baltes, M.Sc.

im Januar 2019

Betreuer:
Prof. Dr. Stephan Diehl, Universität Trier

Berichterstatter:
Prof. Dr. Stephan Diehl, Universität Trier

Prof. Dr. Stefan Wagner, Universität Stuttgart

Abstract

Analyzing and understanding software developers’ work habits and resulting needs is an es-
sential prerequisite to improve software development practice. In this dissertation, we utilize
different qualitative and quantitative research methods to empirically investigate three un-
derexplored aspects of software development: First, we analyze how software developers use
sketches and diagrams in their daily work and derive requirements for better tool support.
Then, we explore to what degree developers copy code from the popular online platform
Stack Overflow without adhering to license requirements and motivate why this behavior
may lead to legal issues for affected open source software projects. Finally, we describe a
novel theory of software development expertise and identify factors fostering or hindering
the formation of such expertise. Besides, we report on methodological implications of our
research and present the open dataset SOTorrent, which supports researchers in analyzing
the origin, evolution, and usage of content on Stack Overflow.

Sketching: When we started our research, an overall picture of developers’ work habits re-
lated to the creation and usage of sketches and diagrams was missing. Hence, we conducted
a mixed-methods study to explore sketches and diagrams in software development practice
and found that creating and using such visual artifacts are frequent tasks among software
practitioners. While sketches and diagrams are often informal, study participants rated them
as helpful for understanding related source code. However, they also pointed to the lack of
tool support to archive sketches together with source code for later access. Participants fur-
ther reported that many sketches start on analog media such as paper or whiteboards, get
revised or redrawn, and then end up in a digital archive. In response to those results, we
developed two tool prototypes, SketchLink and LivelySketches, to be able to better support
developers’ actual sketching and diagramming workflows.

Code Plagiarism: While the phenomenon of software developers regularly copying code
snippets from Stack Overflow has been discussed, an empirical assessment of how common
it is to copy such snippets without the required attribution was missing. In this dissertation,
we first describe the legal situation around Stack Overflow code snippets and then give a first
estimate of how frequently developers copy non-trivial snippets into public GitHub projects
without the required attribution. We found that at most one quarter of the code snippets
were attributed as required by Stack Overflow’s CC BY-SA license. Of all GitHub projects we
identified to contain code copied from Stack Overflow, only 1.8% attributed Stack Overflow
as a source and used a license that is share-alike compatible with CC BY-SA. In other words,
98.2% of those projects have potential licensing conflicts. Our online surveys with develop-
ers revealed that many of them admit copying code from Stack Overflow without attribution
and that they are often not aware of the licensing situation and its implications.

Expertise Development: Previously, there was no comprehensive theory describing the
complex concept of software development expertise and its formation over time. To build
such a theory, we first developed a grounded theory based on open-ended online survey an-
swers and then embedded this theory in existing work on expertise and expert performance.
To refine the resulting theory, we conducted two additional online surveys and derived im-
plications for researchers, developers, and employers. In particular, we point to the role
of monitoring, feedback, and self-reflection for expertise development and highlight their

vi

connection to the concept of deliberate practice, which has previously been described in
psychology literature.

The common goal for all studies we conducted was to better understand software devel-
opers’ work practices. Our findings support researchers and practitioners in making data-
informed decisions when developing new tools or improving processes related either to the
specific work habits we studied or expertise development in general.

Zusammenfassung

Eine wichtige Voraussetzung für die Optimierung von Arbeitsabläufen und die Entwicklung
neuer Werkzeuge in Softwareprojekten ist es, die Arbeitsweise von Softwareentwicklern und
die daraus resultierenden Bedürfnisse zu kennen und zu verstehen. Diese Dissertation be-
schreibt empirische Untersuchungen dreier noch wenig erforschter Bereiche der Softwa-
reentwicklung, stellt neue Werkzeuge vor und gibt Handlungsempfehlungen basierend auf
den durchgeführten Untersuchungen. Zunächst wird illustriert wie Softwareentwickler Skiz-
zen und Diagramme in ihrer täglichen Arbeit einsetzen. Anschließend wird der Umgang von
Softwareentwicklern mit Code-Fragmenten beschrieben, die auf der populären Onlineplatt-
form Stack Overflow bereitgestellt werden. Nach einer detaillierten Erläuterung dieser bei-
den Aspekte der täglichen Arbeit von Softwareentwicklern stellen wir ein erstes Modell vor,
das empirisch fundiert wichtige Eigenschaften eines Experten in der Softwareentwicklung
darstellt und Faktoren auflistet, die die kontinuierliche Weiterbildung von Softwareentwick-
lern unterstützen. Neben diesen drei Forschungsrichtungen gehen wir auf methodische Er-
kenntnisse ein und stellen den offenen Datensatz SOTorrent vor, der im Rahmen dieser Dis-
sertation entstand.

Sketching: Um einen Überblick über die Verwendung von Skizzen und Diagrammen in der
Softwareentwicklung zu erhalten, führten wir mehrere qualitative und quantitative Studien
durch. Unsere Ergebnisse zeigen, dass Softwareentwickler regelmäßig Skizzen und Diagram-
me erstellen und verwenden. Obwohl diese visuellen Artefakte häufig informeller Natur sind,
bewerteten die Teilnehmer unserer Studien sie als hilfreich, um den zugehörigen Quellcode
zu verstehen. Manche Teilnehmer wiesen aber auch auf fehlende Werkzeugunterstützung
hin, die es erlauben würde, Skizzen zusammen mit verwandtem Quellcode zu archivieren.
Sie berichteten ebenso, dass viele Skizzen zunächst auf analogen Medien wie Papier und
Whiteboards entstehen, dann überarbeitet oder neu gezeichnet werden, um schließlich in
digitalen Archiven gesichert zu werden. Basierend auf diesen Ergebnissen entwickelten und
evaluierten wir die beiden Werkzeuge SketchLink und LivelySketches, um Skizzen und Dia-
gramme besser in Softwareentwicklungsprozesse integrieren zu können.

Code Plagiarism: Die Tatsache, dass Softwareentwickler häufig Code von der Onlineplatt-
form Stack Overflow in ihre Softwareprojekte kopieren, wurde zwar diskutiert, es fehlte aber
eine empirische Abschätzung wie häufig dies unter Einhaltung der Lizenzbedingungen ge-
schieht. Wir erörtern zunächst die rechtlichen Rahmenbedingungen und schätzen dann em-
pirisch ab, dass bei weniger als einem Viertel der Code-Fragmente, die von Stack Overflow in
Open-Source-Projekte kopiert werden, auf die Quelle verwiesen wird, wie es CC BY-SA, die
Lizenz von Stack Overflow, verlangt. Des Weiteren berichten wir, dass nur 1.8% der Projek-
te, in denen wir solche Code-Fragmente fanden, sowohl auf die Quelle verwiesen als auch
eine zu CC BY-SA kompatible Lizenz verwendeten. Dies bedeutet, dass 98.2% der Projek-
te diese Fragmente potentiell ohne Einhaltung der Lizenzbedingungen verwenden, was zu
rechtlichen Problemen führen kann. In unseren Umfragen berichteten zudem viele Softwa-
reentwickler, dass sie regelmäßig Code von Stack Overflow kopieren, ohne sich der Lizenzsi-
tuation und deren Implikationen bewusst zu sein.

Expertise Development: Zuvor gab es kein allgemeines Modell, das beschreibt, was Ex-
pertise in der Softwareentwicklung ausmacht und wie sich solche Expertise über die Zeit
entwickelt. Um ein erstes Modell zu konzipieren, leiteten wir zunächst eine Grounded Theo-

viii

ry aus Antworten einer Online-Umfrage mit Softwareentwicklern ab. Diese Theorie kombi-
nierten wir dann mit Ergebnissen aus verwandten Arbeiten der Psychologie und der Softwa-
retechnik und ließen Ergebnisse zweier weiterer Online-Umfragen einfließen. Basierend auf
der daraus resultierenden finalen Theorie beschreiben wir Implikationen für Forscher, Soft-
wareentwickler und Arbeitgeber. Insbesondere zeigen wir auf, welche Rolle (Selbst-)Reflexion
und Rückmeldungen von Kollegen bei der Entwicklung von Expertise spielen und wie diese
Aspekte mit dem Konzept der Deliberate Practice verbunden sind.

Das gemeinsame Ziel aller vorgestellten Studien war es, bestimmte Arbeitsabläufe in der
Softwareentwicklungspraxis zu beschreiben und zu verstehen. Unsere Ergebnisse unterstüt-
zen sowohl Forscher als auch Softwareentwickler dabei, neue Werkzeuge oder Prozessver-
besserungen, die die untersuchten Arbeitsweisen betreffen, auf Grundlage von empirischen
Daten zu erarbeiten, anstatt sich allein auf die eigene Erfahrung verlassen zu müssen.

Preface

This work is a dissertation submitted at the University of Trier (Universität Trier, Fachbereich
IV, Informatik) in January 2019. It has been supervised by Prof. Dr. Stephan Diehl (University
of Trier) and examined by Prof. Dr. Stephan Diehl (University of Trier) and Prof. Dr. Stefan
Wagner (University of Stuttgart).

Imprint

Author and Publisher: Sebastian Baltes, Wiesenweg 9, 54441 Mannebach, Germany.
Printing: Neopubli GmbH, Köpenicker Straße 154a, 10997 Berlin, Germany.
Copyright: © 2019 Sebastian Baltes.

Prior Publication

Parts of this dissertation—including ideas, approaches, results, tables, and figures—have
been published in peer-reviewed journals and conference proceedings. In particular, the
individual chapters are based on the following publications, for all of which the author of
this dissertation is the primary author:

• The exploratory field study and online survey on sketches and diagrams in software
development practice (Chapter 2) has been published as a full paper in the Proceed-
ings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2014) [28] (publishing rights licensed to ACM, 2014).

• The observational study on how developers locate and communicate performance
bugs—and use sketches for this task—has been published as a full paper in the Pro-
ceedings of the 9th International Symposium on Empirical Software Engineering and
Measurement (ESEM 2015) [39] (© IEEE 2015).

• The tools SketchLink and LivelySketches (Chapter 2) were presented during a tool demo
at the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE 2014) [38] (publishing rights licensed to ACM, 2014) and as short paper
and poster at the 2017 IEEE Working Conference on Software Visualization (VISSOFT
2017) [43] (© IEEE 2017). A first version of the SketchLink web application was devel-
oped in the course of the author’s master’s thesis project.

• The study on the usage and attribution of Stack Overflow code snippets in GitHub
projects (Chapter 3) has been published in Springer’s Empirical Software Engineer-
ing journal (EMSE 2018) [31] (© Springer Science+Business Media 2018). Parts of this
study have previously been presented in a poster and in an extended abstract pub-
lished in the Proceedings of the 39th International Conference on Software Engineering
Companion (ICSE 2017 Companion) [44] (© IEEE 2017).

x

• The theory-building study on software development expertise (Chapter 4) has been
published as a full paper in the Proceedings of the 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2018) [32] (publishing rights licensed to ACM, 2018).

• The methodological insights about sampling software developers (Chapter 5) have
been published as a short paper in the Proceedings of the 10th International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM 2016) [29] (publish-
ing rights licensed to ACM, 2016).

• A description of the open dataset SOTorrent (Chapter 6)—including first analyses—has
been published as a full paper in the Proceedings of the 15th International Conference
on Mining Software Repositories (MSR 2018) [45] (publishing rights licensed to ACM,
2018). This dataset was later selected as the mining challenge for the 16th International
Conference on Mining Software Repositories (MSR 2019) [47] (© IEEE 2019).

Other publications I was involved in, which are not part of this dissertation, include a vi-
sual debugging tool for regular expressions [52], a tool to make developers’ mental model
visible and explorable [58], a tool to visually explain source code in class rooms [57], a vi-
sual analysis and coding tool to support qualitative data analysis [60], a study on the in-
fluence of continuous integration on the commit activity in GitHub projects [46], and an
inter-disciplinary study on the digital construction of urban tourism space [323].

Acknowledgments

This dissertation would not have been possible without the support of many others. Since
most of the people mentioned in the acknowledgments speak German as their first language,
it feels more natural to formulate the following paragraphs in German:

Zunächst möchte ich mich bei allen Studienteilnehmern und bei allen Koautoren der wäh-
rend meiner Promotionszeit verfassten Artikel bedanken. Insbesondere möchte ich dabei
die Studenten hervorheben, die mit ihren Abschlussprojekten zu meiner Forschung beige-
tragen haben.

Besonderer Dank gilt meinen aktuellen und ehemaligen Kollegen in der Arbeitsgruppe.
Mein Vorgänger Fabian Beck hat mich bereits während meiner Masterarbeit unterstützt,
später dann als Koautor dreier Forschungspapiere und Korrektor dieser Dissertation. Mei-
nen Arbeitskollegen Rainer Lutz, Benjamin Biegel und Oliver Moseler bin ich dankbar für
das immer freundschaftliche Arbeitsumfeld und die netten Gespräche—sei es in der Mensa
oder während einer Kaffeepause. Rainer hat Teile dieser Dissertation Korrektur gelesen, Ben-
jamin und Oliver sind Koautoren verschiedener Forschungspapiere. Vielen Dank dafür! Aus
den Arbeitsbeziehungen sind Freundschaften entstanden, die hoffentlich noch lange über
die gemeinsame Zeit in Trier hinaus Bestand haben werden.

Ich möchte auch den Kollegen aus anderen Arbeitsgruppen und unseren Sekretärinnen
danken, die die gemeinsame Zeit in Trier bereichert haben. Besonders hervorheben möchte
ich Florian Reitz, der neben vielen gemeinsamen Mensabesuchen und spontanen Gesprä-
chen im Büro immer ein offenes Ohr für fachliche Fragen hatte. Auch möchte ich mich bei
Bernhard Baltes-Götz für sein Feedback zu statistischen Fragestellungen bedanken.

xi

Aus einer eher zufälligen Begegnung mit Christoph Treude auf einer Konferenz in Shang-
hai resultierte eine produktive Kooperation und ein unvergesslicher Besuch in Adelaide. Da-
für möchte ich mich bei Christoph herzlich bedanken. Stefan Wagner möchte ich dafür dan-
ken, dass er sich dazu breit erklärt hat, diese Dissertation zu begutachten. Insbesondere bei
einem Besuch in Stuttgart im November 2017 half er mir zudem bei der Strukturierung der
Arbeit und bei der Wahl des Titels.

Meinem Betreuer Stephan Diehl möchte ich dafür danken, dass er immer offen für mei-
ne Ideen war und somit die Bildung eines eigenständigen Forschungsprofils ermöglichte.
Er hat meine Dienstreisen und insbesondere meinen Forschungsaufenthalt in Adelaide be-
dingungslos unterstützt und hat mir auch in der Lehre viele Freiheiten eingeräumt. Zudem
konnte ich mich immer an ihn wenden, sei es bei Fragen und Problemen oder um über all-
tägliche Dinge zu sprechen. Vielen Dank für dein Vertrauen und dass du es mir ermöglicht
hast, in deiner Arbeitsgruppe zu forschen und zu lehren!

Diese Dissertation, sowie das vorherige Studium in Trier, Saarbrücken und Växjö, wären
nicht ohne die finanzielle und logistische Unterstützung meiner Familie möglich gewesen.
Zu letzterem Punkt fällt mir ein Zitat meines Bruders aus dem Februar 2015 ein: “Und wohin
ziehen wir nächstes Wochenende um?”

Besonders hervorheben möchte ich an dieser Stelle meine Eltern Christel und Ernst junior,
meine Großeltern Maria und Ernst senior, meine Schwiegereltern Maria und Herbert, sowie
meinen Bruder Maximilian und meine Schwägerin Miriam. Außerdem möchte ich meine
Großmutter Josefine und meinen Großvater Edmund erwähnen, der sicherlich stolz gewe-
sen wäre den Abschluss meiner Promotion zu erleben.

Besonders stolz bin ich darauf, dass ich den Weg vom gemeinsamen Abitur 2007, über
den gemeinsamen Bachelorabschluss 2010, die jeweiligen Auslandsaufenthalte in Schwe-
den 2010 und 2012, den gemeinsamen Masterabschluss 2013 bis zur gemeinsamen Promo-
tion 2019 zusammen mit meiner Frau Natalie gehen konnte. Ich konnte mit ihr immer über
alles—auch fachliche Fragen—sprechen und schätze ihre Meinung sehr. Wir haben es aber
trotzdem geschafft uns gegenseitig abzulenken, wenn wir genug vom Unialltag hatten. Ich
freue mich auf viele weitere gemeinsame Jahre, frei nach Antonio Machado: “Wege entstehen
dadurch, dass man sie geht.”

Feedback

Any feedback on this dissertation, including ideas for future work or collaborations, are wel-
come. Please feel free to contact me via email (research@sbaltes.com) for such questions or
other comments.

mailto:research@sbaltes.com

Contents

1 Overview 1

2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice 3
2.1 Introduction . 4
2.2 Research Design . 4

2.2.1 Phase 1: Exploratory Research . 5
2.2.2 Phase 2: Online Survey . 7
2.2.3 Phase 3: Observational Study . 11

2.3 Results: Online Survey . 15
2.3.1 Methods . 15
2.3.2 Survey Participants . 15
2.3.3 Findings . 16
2.3.4 Correlations . 24

2.4 Results: Observational Study . 26
2.4.1 Methods . 26
2.4.2 Study Participants . 26
2.4.3 Findings . 28

2.5 Limitations and Threats to Validity . 32
2.6 Related Work . 34
2.7 Discussion . 36
2.8 Conclusion: Empirical Results . 37
2.9 Tool Support . 37

2.9.1 Existing Tools . 38
2.9.2 SketchLink: Linking Sketches to Source Code Artifacts 38
2.9.3 LivelySketches: Supporting Round-trip Sketching 45

2.10 Conclusion: Tool Support . 50

3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects 53
3.1 Introduction . 54
3.2 Research Design . 55
3.3 Legal Situation . 57

3.3.1 Copyright Status of Stack Overflow Code Snippets 57
3.3.2 Classification of Stack Overflow’s License 58
3.3.3 Stack Overflow’s License Change Attempt 58
3.3.4 Related Lawsuits . 58

3.4 Preliminary Study . 59
3.4.1 Method . 59
3.4.2 Results . 59

3.5 Usage Without Attribution (RQ1 – Phase 1) . 60
3.5.1 Method . 60
3.5.2 Results . 62

3.6 Usage Without Attribution (RQ1 – Phase 2) . 64
3.6.1 Method . 65

xiv Contents

3.6.2 Calibration of the Code Clone Detector . 66
3.6.3 Results . 68

3.7 Usage Without Attribution (RQ1 – Phase 3) . 69
3.7.1 Method . 73
3.7.2 Results . 75

3.8 Summary (RQ1 – Phases 1–3) . 75
3.9 Frequency of Licensing Conflicts (RQ2) . 76
3.10 Adherence to Attribution Requirements (RQ3) . 77

3.10.1 Method . 77
3.10.2 Results . 79

3.11 Developers’ Awareness Regarding SO’s Licensing (RQ4) 80
3.11.1 Method . 80
3.11.2 Results . 80

3.12 Limitations and Verifiability . 82
3.13 Related Work . 83

3.13.1 Stack Overflow and GitHub . 83
3.13.2 Licensing and Code Clones . 85

3.14 Conclusion . 85

4 Expertise Development: Towards a Theory of Software Development Expertise 87
4.1 Introduction . 87
4.2 Research Design . 88
4.3 Phase 1: Grounded Theory . 89

4.3.1 Survey Design and Sampling . 90
4.3.2 Terminology . 91
4.3.3 Concepts . 91
4.3.4 Relationships . 93

4.4 Phase 2: Preliminary Conceptual Theory . 93
4.4.1 Concepts . 94
4.4.2 Relationships . 96

4.5 Phase 3: Revised Conceptual Theory . 97
4.5.1 Survey Design . 97
4.5.2 Sampling . 99
4.5.3 Concepts . 101
4.5.4 Relationships . 105

4.6 Experience and Expertise . 106
4.6.1 Programming Experience vs. Expertise . 106
4.6.2 Validity of Expertise Self-assessments . 107

4.7 Limitations and Threats to Validity . 109
4.8 Related Work and Operationalization . 110
4.9 Conclusion . 112

5 Methodological Insights: Issues in Sampling Software Developers 115
5.1 Introduction . 115
5.2 Sampling Strategies . 116

5.2.1 Convenience Sampling . 116
5.2.2 Experience with Sampling Strategies . 116

Contents xv

5.3 Participant Demographics . 120
5.4 Ethical Considerations . 121

5.4.1 General Ethical Principles . 122
5.4.2 The CASRO Code of Ethics . 123
5.4.3 Ethics of Sampling Strategies . 123

5.5 Conclusion . 124

6 Open Data: Building and Maintaining the SOTorrent Dataset 127
6.1 Introduction . 127
6.2 Dataset . 129
6.3 Database Schema . 130
6.4 Post Block Extraction . 132
6.5 Post Block Matching . 133

6.5.1 Similarity Metrics . 133
6.5.2 Ground Truth . 136
6.5.3 Matching Strategy . 137
6.5.4 Metrics Evaluation . 139
6.5.5 Analysis of False Positive and False Negative Predecessor Matches 142
6.5.6 Revised Matching Strategy and Post Block Extraction 144

6.6 Evolution of Stack Overflow Posts . 146
6.6.1 Quantitative Analysis . 146
6.6.2 Properties of Edited Posts . 149

6.7 Communication and Edit Patterns . 150
6.7.1 Quantitative Analysis . 150
6.7.2 Qualitative Analysis . 150
6.7.3 Visual Analysis Tool . 151
6.7.4 Patterns . 151

6.8 Code Clones on Stack Overflow . 154
6.8.1 Data Retrieval and Quantitative Analysis 154
6.8.2 Qualitative Analysis . 155

6.9 Summary . 160
6.10 Related Work . 161
6.11 Conclusion . 161

7 Summary and Future Work 163

List of Figures 167

List of Tables 171

Bibliography 173

1
Chapter 1

Overview

“ If you don’t think carefully, you might think that programming is just typing
statements in a programming language.”

—Ward Cunningham, The Pragmatic Programmer (2000)

A work habit, that is a “settled tendency or usual manner of behavior” [234], can positively
or negatively influence software developers’ daily work. Knowing and understanding such
work habits and resulting needs are essential prerequisites to improve existing software de-
velopment processes and tools. However, the software engineering research community is
often criticized for not addressing the problems that practitioners actually face during their
work [66]. At the same time, software developers’ beliefs are rather based on their personal
experience than on empirical findings [110]. To fill this gap between academia and practice,
we conducted several empirical studies investigating different aspects of software developers’
work habits and expertise.

In the following, we provide a brief overview of the structure of this dissertation. While
the goal guiding all empirical studies we conducted was to gain a better understanding of
software developers’ work practices, we drew different conclusions for each of the studied
phenomena: Based on our results, we developed novel tool prototypes to better support
software developers’ sketching and diagramming workflows, we reached out to developers
to make them aware of possible licensing issues in their software projects due to code copied
from Stack Overflow, and we provide recommendations for researchers, developers, and em-
ployers how to utilize our findings on software development expertise and its formation.

Chapter 2 For the first part of this dissertation, we studied how software developers use
sketches and diagrams in their daily work. At the time we started our research, an overall pic-
ture of developers’ work habits related to the creation and usage of sketches and diagrams
was missing. To fill this gap, we conducted an exploratory field study in different software
companies, an online survey with software practitioners, and an observational study with
software developers. We found that developers frequently create and use sketches and dia-
grams and that they consider many of those visual artifacts to be helpful in understanding
related source code. However, we also identified a lack of tool support to archive and retrieve
sketches and diagrams documenting different aspects of software systems. Thus, based
on our findings, we derived requirements to better support developers’ sketching and di-
agramming workflows and implemented those requirements in two tool prototypes, named
SketchLink and LivelySketches, which we then evaluated in formative user studies.

Chapter 3 The second part of this dissertation presents an extensive empirical study on a
rather negative work habit: We investigated to what degree developers adhere to Stack Over-
flow’s license requirements when copying code snippets published on that platform—or, in
other words, to what extent they commit code plagiarism. Since many developers use the
online question-and-answer platform Stack Overflow on a daily basis [314], it is an essential

2 1 Overview

part of their daily work life. If developers copy code snippets from that platform into their
open source software projects without adhering to the corresponding license requirements,
legal issues may arise. After describing the legal situation around Stack Overflow code snip-
pets, we give a first estimate of how frequently developers copy such snippets into public
GitHub projects without the required attribution, provide an analysis of licensing conflicts,
and present results from an online survey which suggest that many developers are not aware
of the licensing situation and its implications. Besides publishing our empirical results, we
reached out to owners of open source GitHub projects to make them aware of possible li-
censing conflicts in their projects.

Chapter 4 In the third part of this dissertation, we present a first conceptual theory of soft-
ware development expertise that is grounded in related literature and three online surveys
with software developers. The connection to work habits is that, by learning from past ex-
perience, developers may adapt their work habits over time. Moreover, existing habits re-
lated to self-improvement and learning may shape the path of an individual from being a
novice towards being an expert in software development. Previously, the software engineer-
ing research community was lacking a comprehensive theory on what constitutes software
development expertise and how such expertise is formed. Our theory describes important
properties of software development expertise and factors fostering or hindering its forma-
tion, including how developers’ performance may decline over time. Based on that theory,
we provide recommendations for researcher who want to study expertise formation, devel-
opers who want to improve their software development skills, and employers who want to
build a work environment supporting expertise development of their staff.

Chapter 5 While Chapters 2, 3, and 4 describe the main contributions of this dissertation,
in Chapter 5 we reflect on methodological and ethical issues we faced when sampling soft-
ware developers for the online surveys we conducted. The goal of that chapter is to inform
the research community which strategies worked best for us, but we also want to start a dis-
cussion about the ethics of different sampling strategies that researchers currently use.

Chapter 6 To conclude this dissertation, and to corroborate our open data efforts, we
present the open dataset SOTorrent, which we created in the context of our research on Stack
Overflow code snippets, described in Chapter 3. Besides explaining how we built the dataset,
we use it to conduct a first analysis of the evolution of content on Stack Overflow, and to in-
vestigate code snippets copied from external sources into Stack Overflow and duplicates of
code snippets within Stack Overflow. We continue to maintain the dataset to support further
research on the origin, evolution, and usage of content on Stack Overflow.

Throughout this dissertation, we summarize our contributions on the first page of each
chapter and highlight individual findings in boxes with gray background. For quantitative
results, we follow the APA guidelines for statistical abbreviations and symbols [11].

2
Chapter 2

Sketching: Developers’ Usage
of Sketches and Diagrams
in Practice

“The great enemy of communication, we find, is the illusion of it.”

—William H. Whyte, Is Anybody Listening? (1950)

Communication is omnipresent in software development. Requirements are communi-
cated from prospective users to the developers implementing the software, the general ar-
chitecture is communicated within the development team, developers communicate with
each other during pair programming, and after deployment, issues are reported back to
developers. Such information flows involve diverse channels [322], including face-to-face
communication [14, 107], email [59], videoconferencing [14, 107], and team collaboration
tools [212]. Especially in collocated settings, developers use informal sketches and diagrams
for communication [109]. Those visual artifacts, spanning different types of media [28], sup-
port developers in designing new and understanding existing software systems [84]. Nev-
ertheless, when we started our research on sketches and diagrams in software development
practice, an overall picture of how developers use those visual artifacts was missing. There-
fore, in this chapter, we first motivate our notion of sketch dimensions to capture the most
important characteristics of visual artifacts used in software development, and then present
the design and results of a mixed methods study we conducted to investigate how software
practitioners use such artifacts. Our research included an exploratory field study in three
different software companies, an online survey with 394 participants, and an observational
study with six pair programming teams. After describing the state of practice and resulting
needs of software practitioners working with sketches and diagrams, we present two tool
prototypes that we developed in response to the results of our empirical investigation.

The content of this chapter is based on four peer-reviewed publications [28, 38, 39, 42].

Contributions:

• A characterization of sketches and diagrams in software development practice, which
is grounded in related work and in a field study we conducted in three different software
companies.

• An assessment of 11 different dimensions of sketches and diagrams in software devel-
opment using an online survey with 394 software practitioners.

• An analysis how developers communicate in a pair-programming setting when locating
performance bugs, including an investigation of the role of sketches in this scenario.

• A presentation of two tool prototypes supporting software developers’ sketching and
diagramming workflows.

4 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

2.1 Introduction

Over the past years, studies have shown the importance of sketches and diagrams in software
development [84, 109, 354]. Most of these visual artifacts do not follow formal conventions
like the Unified Modeling Language (UML), but have an informal, ad-hoc nature [84, 109,
218, 255]. Sketches and diagrams are important because they depict parts of the mental
model developers build to understand a software project [204]. They may contain different
views, levels of abstraction, formal and informal notations, pictures, or generated parts [84,
109, 345, 353]. Developers create sketches and diagrams mainly to understand, to design,
and to communicate [84]. Media for sketch creation include whiteboards, engineering note-
books, scrap papers, but also software tools like Photoshop and PowerPoint [84, 246, 354].
When designing, sketches relieve short-term memory, augment information processing, and
are a source of creativity [157, 325, 341]. Some authors even argue that “manual sketching
has cognitive benefits that cannot easily be replaced by computational tools” [158].

The goal of our research was to investigate the usage of sketches and diagrams in soft-
ware engineering practice and their relation to the core elements of a software project, the
source code artifacts. Furthermore, we wanted to assess how helpful sketches are for under-
standing the related code. We intended to find out if, how, and why sketches and diagrams
are archived and are thereby available for future use. Since software is created with and for
a wide range of stakeholders [327] and sketches are often a means for communicating be-
tween these stakeholders, we were not only interested in sketches and diagrams created by
software developers, but by all software practitioners, including testers, architects, project
managers, as well as researchers and consultants.

Our study complements a number of existing studies on the use of sketches and diagrams
in software development (see Section 2.6), which analyzed the above aspects only partially
and often focused on an academic environment [354], a single company [84, 204], open
source projects [90, 372], or were limited to a small group of participants [255, 372]. For
simplicity, we use the term sketch in the following to denote both informal sketches as well
as diagrams following a formal notation such as UML.

With our findings, we motivate the need for tool support to better integrate sketches and
diagrams into the software development process. In Sections 2.9.2 and 2.9.3, we present two
tool prototypes that we implemented and evaluated, to illustrate directions for future work.

2.2 Research Design

Our research was carried out in three phases: First, we conducted an exploratory field study
on the use of sketches and diagrams in three different software companies to determine a set
of dimensions for characterizing those visual artifacts (see Section 2.2.1). In total, we identi-
fied the 11 dimensions that are shown in Figure 2.1. Some of them were derived from related
work, others emerged during our research. In the second phase, we asked practitioners to
describe their last sketch based on these dimensions in an online survey with 394 partici-
pants (see Section 2.2.2). Finally, we conducted an observational study with twelve software
developers to investigate how they use sketches in pair programming debugging sessions
(see Section 2.2.3).

2.2 Research Design 5

Figure 2.1 – 11 dimensions of a sketch or diagram in software development.

2.2.1 Phase 1: Exploratory Research

For our exploratory study, we collaborated with a company developing utility software (com-
pany A), a company developing software for real-time devices (company B), and a company
developing software for the health care sector (company C). Companies A and B are small to
medium-sized enterprises, whereas company C is a large corporation.

Field Study

First, we collected and analyzed “real-world” sketches drawn by software practitioners. Pre-
vious studies have shown that, in practice, sketches and diagrams are often rather infor-
mal [84, 109, 255]. However, we had only seen few samples of sketches drawn by profes-
sional software developers. Thus, we collected 47 sketches drawn by 13 different developers
of companies A and B and interviewed them about certain properties of their sketches (see
Figures 2.2 and 2.3 for exemplary sketches and diagrams).

We prepared two questionnaires, one for each developer and one for each collected sketch.
Using the developer questionnaire, we captured demographic data such as gender, age, and
work experience. Furthermore, we asked how often participants normally use sketches in
their daily work. For each sketch, we asked how many persons contributed to it, the pur-
pose for creating the sketch, and its (estimated) lifespan. Moreover, we requested a small
description and asked for the relation of the sketch to source code.

The median age of the developers who participated in the field study was 29 and their me-
dian work experience was 3 years. We were surprised by the broad spectrum of sketches and
diagrams, even in this limited setting. The sketches ranged from simple to-do lists through
visualizations of geometric problems to computer-generated UML diagrams. However, the
majority of sketches were informal, only two of them contained UML elements. The most
common purposes were understanding issues and designing new features. The median lifes-
pan was rather short (2 to 3 days) and only a minority of sketches were kept permanently
(8.5%). Developers related 79% of their sketches to methods or classes. In company A, the
employees used sketches on a monthly basis, in company B on a weekly basis. These results
led to first preliminary assumptions on the dimensions formality, UML elements, purpose,
lifespan, archiving, and relation to source code:

Preliminary Results I: Sketches are mostly informal and UML is rarely used. Their main
purposes are understanding and designing and, in most cases, their lifespan is only a
few days. Sketches are rarely archived and are mainly related to classes and methods.

6 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

Figure 2.2 – Sketches collected during our field study, showing a geometrical problem, a workflow
and a related GUI, and the interaction of software components (left to right).

Translate : TranslationProject

 : StringData Select translation from database

 : DfmCodePart
 : StringData Select translation from database

Figure 2.3 – Example of a rather formal diagram collected during our field study, showing a process
for translating resource strings.

Interviews

Since the questionnaires and collected sketches revealed differences between the cultures
of the two companies regarding sketch usage, we wanted to investigate how sketching is
integrated in the software development workflows of different companies. Therefore, we
semi-structurally interviewed one software developer and the chairman of company B. As we
could not interview employees of company A, we recruited two developers from company C
to be interviewed. We recorded the interviews, which lasted between 10 and 25 minutes, and
transcribed them for later analysis.

The interviews revealed that the management of company B actively demanded sketching
and sketch archiving, without forcing the developers to use a certain notation; in company
C, the role of sketching differed between the teams. One developer reported that in his team,
informal whiteboard and paper sketches were used “almost daily” in different situations. In
contrast to that, the other developer from the same company, but a different team, noted
that hand-drawn sketches were used “surprisingly little”.

While the collected sketches were mostly created on paper, the interviews revealed the im-
portance of whiteboards as sketching media. One participant reported that in his team, the
whiteboard is normally used as soon as more than two persons are involved. Otherwise, the
preferred medium is paper, but computer programs like PowerPoint and Enterprise Architect

2.2 Research Design 7

are also used. As mentioned above, only few of the collected sketches were archived perma-
nently. However, all participants mentioned important sketches being archived, either by
saving a digital picture or by redrawing them digitally. The latter is an example of a transi-
tion from one medium to another, as described by Walny et al. [354]. We did not focus on
these transitions in the field study, but decided to further investigate the reuse and revision
of sketches in our online survey. In this context, we also wanted to assess how much effort
goes into the creation of sketches. Furthermore, the interviews revealed the importance of
the team context and the contributors that helped creating the sketch.

Preliminary Results II: Context and contributors influence the sketching practice in
teams. Paper and computers are used when sketching with one or two persons, other-
wise whiteboards are the preferred medium.

2.2.2 Phase 2: Online Survey

While some of the sketch dimensions have been partly addressed in existing studies (e.g.,
medium [84, 204], purpose [84, 204], revision [354], and UML elements [255]), others, such as
the relation to source code, have not been investigated yet. With our survey, we wanted to
reproduce findings from the other studies, but also intended to gain new insights into the
use of sketches and diagram in software development practice.

Research Questions

We were especially interested in the reasons why or why not sketches are archived. Moreover,
we wanted to collect data on the actual lifespan of sketches in practice and their relation
to source code, focusing on their value for documenting the related source code artifacts.
We dedicated an own dimension to UML, because it it often seen as the “lingua franca” of
software engineering [135, 321]. Since past studies and our preliminary research showed that
UML is often used informally [84, 255], we wanted to assess how many UML elements are
actually present on sketches created by software practitioners. The following five research
questions summarize what we wanted to learn with our online survey:

RQ1.1 How frequently do developers create, use, and revise sketches and how much effort
is put into these sketches?

RQ1.2 What is the lifespan of sketches; to what extent and why are they archived?

RQ1.3 How formal are sketches and to what extent do they contain UML elements?

RQ1.4 What media are used for creating sketches, in what context and for what purpose
are they created, and how many persons contribute to them?

RQ1.5 To which source code artifacts are sketches related and could they help to under-
stand these artifacts in the future?

Study Design

To investigate those research questions, we designed an online questionnaire consisting of
28 questions in total, 15 of which referred to the last sketch or diagram that the participant
created for a professional software project (see supplementary material [20]). Three of these

8 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

Table 2.1 – Structure of online survey (part 1 of 2), asterisks indicate level of measurement (no asterisk:
nominal scale, one asterisk: ordinal scale, two asterisks: ratio scale).

Variable Question Values and Coding

creation∗
(CRE) → RQ1

When did you create your last sketch or diagram (that
you created for your professional work and that is re-
lated to a software project)?

0 = less than 10 minutes ago
1 = several minutes ago (10-60 minutes)
2 = several hours ago (1-8 hours)
3 = several work days ago (1-5 days)
4 = several weeks ago (1-4 weeks)
5 = several months ago (1-12 month)
6 = more than one year ago
NA = I don’t know

revision∗
(REV) → RQ1

Has the sketch/diagram been revised after its initial
creation?

0 = no
1 = yes, once 2 = yes, multiple times
NA = I don’t know

effort∗
(EFF) → RQ1

How much effective work time went into the creation
and revision of the sketch/diagram up to now?
(If several persons were involved, add up the work
times of all contributors.)

0 = less than 10 minutes
1 = several minutes (10-60 minutes)
2 = several hours (1-8 hours)
3 = several work days (1-5 days)
4 = more than 5 work days
NA = I don’t know

contributors∗
(CON) → RQ4

How many persons contributed to the sketch/diagram
up to now (including yourself)?

1 = 1 person
2 = 2 persons
3 = 3 persons
4 = 4 to 10 persons
5 = 11 to 50 persons
6 = 51 to 100 persons
7 = more than 100 persons
NA = I don’t know

medium
(MED) → RQ4

What medium did you use to create the sketch/dia-
gram?

paper / traditional whiteboard / interactive whiteboard
/ tablet or smartphone / computer / other

lifespan∗
(LSP) → RQ2

Please try to estimate the lifespan of the sketch/dia-
gram (how long did/will you use it?).

0 = lifespan ended immediately after creation
1 = less than 10 minutes
2 = several minutes (10-60 minutes)
3 = several hours (1-8 hours)
4 = several work days (1-5 days)
5 = several weeks (1-4 weeks)
6 = several months (1-12 months)
7 = more than one year
NA = I don’t know

archiving∗
(ARC) → RQ2

Has the sketch/diagram been archived or will it be
archived?
Furthermore, we asked why or why not the sketch or di-
agram was archived (open-ended).

0 = no
1 = yes, on paper
2 = yes, digitally
3 = yes, digitally and on paper
NA = I don’t know

formality∗
(FOR) → RQ3

Please try to specify the formality of your sketch/dia-
gram.

0=very informal to 5=very formal
NA = I don’t know (6-point Likert scale item)

UML∗
(UML) → RQ3

To which degree does the sketch / diagram contain
UML elements?

0=no UML elements to 5=only UML elements
NA = I don’t know (6-point Likert scale item)

purpose
(PUR) → RQ4

The sketch/diagram helped me to ... (none or multiple
answers possible)

understand source code / understand an issue / de-
sign a new architecture / design new GUI components
/ design new features / review source code / refactor
source code / debug source code / explain source code
to someone else / explain an issue to someone else /
analyze requirements / support managing the project
/ other task(s)

artifacts
(ART) → RQ5

Please select the software artifact(s) to which the con-
tent of the sketch/diagram is related. (none or multiple
answers are possible)

(single or multiple) statement(s) or expression(s) / (sin-
gle or multiple) attribute(s), parameter(s), propertie(s),
or variable(s) / (single or multiple) method(s), func-
tion(s), or procedure(s) / (single or multiple) classe(s),
object(s), or prototype(s) / (single or multiple) pack-
age(s), namespace(s), module(s), unit(s), or folder(s) /
(single or multiple) project(s) / other artifact(s)

help-self∗
(HES) → RQ5

Do you think that the sketch/diagram could help you
in the future to understand the related source code ar-
tifact(s)?

0=it will definitely not help to 5=it will definitely help
NA = I don’t know
(6-point Likert scale item)

help-others∗
(HEO) → RQ5

Do you think that the sketch/diagram could help other
software developers in the future to understand the re-
lated source code artifact(s)?

0=it will definitely not help to 5=it will definitely help
NA = I don’t know
(6-point Likert scale item)

2.2 Research Design 9

Table 2.2 – Structure of online survey (part 2 of 2), asterisks indicate level of measurement (no asterisk:
nominal scale, one asterisk: ordinal scale, two asterisks: ratio scale).

Variable Question Values and Coding

area
(ARE) → RQ4

What is the main application area of the project (for
which the sketch/diagram was created)?

software tools / web development / computer games /
public media / telecommunications / financial services
/ health / retail / manufacturing / automotive systems
/ aerospace / real-time systems / civil service / other

team-size∗
(TES) → RQ4

How many persons work on this project? See variable contributors.

model-driven∗
(MDR) → RQ4

Does the project team employ model-driven software
engineering?

0=never to 5=always
NA = I don’t know
(6-point Likert scale item)

agile∗
(AGI) → RQ4

To which degree does the team employ agile software
development methods?

0=only using agile methods
to
5=only using other methods
NA = I don’t know
(6-point Likert scale item)

usage∗
(USE) → RQ1

When did you use (look at, modify, extend) the last
sketch or diagram that you did not create yourself?

See variable creation.

gender
(GEN)

Your gender: male / female
(optional)

age∗∗
(AGE)

Your age: 0-99 year(s)
(optional)

experience∗∗
(EXP)

Your professional work experience in software develop-
ment:

0-99 year(s)
(optional, please round up to full years.)

work-time∗∗
(TIM)

How much of your work time is dedicated to software
development?

0-100%
(optional)

occupation
(OCC)

Your current occupation? none / software developer / software architect / project
manager / ... / other

organization
(ORG)

What type of organization do you work in? government / educational / very small company (<10
employees) / small company (10-50 employees) /
medium company (51-1000 employees) / large com-
pany (>1000 employees) / self-emplyed

country
(COU)

Which country do you work in? country code
(Germany=DE, United States of America=US, etc.)

Additional remarks (open-ended): remarks regarding the sketch or diagram used to an-
swer the above questions, the questionnaire as a
whole, or the general usage of sketches and diagrams
in software development

10 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

questions were open-ended, the others were closed-ended. One of our main goals while de-
signing the questionnaire was to make it as concise as possible to increase the completion
rate [112] and to make it more likely that companies would forward our request for partici-
pation.

To assess the 11 dimensions mentioned above, we asked the participants about the last
sketch or diagram they created for a software project. Furthermore, we asked if the sketch
could be helpful in the future to understand the related source code artifact(s) and for demo-
graphic data about the respondent. The target population for our study, i.e., the population
of which we drew a sample, were basically all software practitioners in the world, meaning all
software developers, testers, and architects, but also consultants, researcher, and everyone
else involved in creation of software.

The questionnaire was online from August 28, 2013 until December 31, 2013, collecting 394
responses in total. First, we recruited participants by a network of colleagues and contacts,
asking them to motivate others to participate in our study. In a second phase, we posted a
call for participation in two social networks, various online communities and IRC channels.
Furthermore, we contacted several German software companies and asked them to forward
a call for participation to their employees. In a third phase, the German IT news website
heise developer1 published a short article on our survey, asking the readers to participate. In
the last recruitment phase, we contacted people working in the area of software engineering,
asking them to advertise our survey on Twitter. We also posted a call for participation in a
large LinkedIn group with more than 44.000 members, focusing on software architecture. We
provide more information on our sampling strategies and related issues in Section 5.2.2.

All survey questions and the coding for the response values can be found in Tables 2.1 and
2.2. Moreover, we provide the questionnaire, answers, and analysis scripts as supplemen-
tary material [20]. The variables in the table are either directly related to a certain research
question or capture demographic data about the participants. The names of most variables
are based on the sketch dimensions. To answer RQ1.1, we asked when the sketch or diagram
has been created (variable creation), if and how often the sketch has been revised (variable
revision), and how much effort went into the creation of the sketch (variable effort). For
RQ1.2, we asked the participants to estimate the lifespan of their sketch (variable lifespan)
and if and how the sketch was or will be archived (variable archiving). To assess RQ1.3, the
participants had to specify the formality of their sketch as well as the use of UML elements
on a six-point Likert scale item (variables formality and UML). For RQ1.4, we asked what
medium was used for creating the sketch (variable medium) and how many persons con-
tributed it (variable contributors). We also asked to which software artifact(s) the content of
the sketch was related (variable artifacts) and if it may help the respondent or others in the
future to understand the related software artifact(s). Moreover, we used multiple variables
to capture the context in which the sketch was created (team size, application area, employ-
ment of agile methods and model-driven software engineering).

Beside these closed-ended questions, our questionnaire contained three open-ended ques-
tions: Two of them were related to RQ1.2, asking for reasons why or why not the sketch has
been archived. At the end of our questionnaire, participants had the possibility to provide
general remarks on their last sketch or their general usage of sketches and diagrams.

1http://www.heise.de/developer/

http://www.heise.de/developer/

2.2 Research Design 11

2.2.3 Phase 3: Observational Study

To gain an in-depth understanding of how sketches can support a particular software devel-
opment task, we conducted an observational study in a pair programming setting where de-
velopers were asked to fix real-world performance bugs using a tool previously developed in
our research group [51]. We designed the study as a structured qualitative observation study
in a controlled setting. Twelve software developers participated in teams of two, resulting
in six study sessions. Each session was divided into three phases: after a tutorial, the teams
were asked to locate and fix four real-world performance bugs, followed by a questionnaire
collecting feedback from the participants. After motivating the task of performance debug-
ging, we describe our study design and in particular how the study sessions were executed.

Performance Debugging

Performance is a non-functional requirement that every software needs to fulfill, at least to
some extent. It might be hard to optimize the performance of already well-implemented
algorithms. But often, bugs in form of unnecessarily complex or slow operations affect the
performance of software. Jin et al. [184] define performance bugs as “defects where relatively
simple source code changes can significantly speed up software, while preserving function-
ality.” In that sense, performance bugs significantly differ from usual bugs, which are devia-
tions of the program behavior from specified functional requirements. Nonetheless, perfor-
mance bugs are critical as well because they could corrupt user experience, reduce system
throughput, increase latency, and waste computational resources [184, 249]. Although they
can be fixed with simple changes, locating and understanding them is a difficult task. Com-
plex chains of executed methods need to be traced and, for every statement and branch,
the developer needs to clarify whether runtime was consumed not more than appropriate.
Our assumption was that sketches can help developers to organize information during this
complex process.

Research Questions

Different studies have already been conducted that investigate fixing functional bugs [185,
197, 205]. We, however, were not aware of any study that focuses on observing developers
locating performance bugs. Results from other studies on debugging processes cannot be
transferred directly because the steps and tools required to optimize a non-functional re-
quirement like performance are substantially different from those applied for fixing a func-
tional bug. These differences include: (i) Developers cannot analyze whether a program is
correct regarding performance because there only exist better or worse solutions, (ii) devel-
opers need to investigate not only program state but also runtime consumption, and (iii)
collecting runtime information requires to set up realistic benchmarks that differ from usual
regression tests.

The user study we conducted aimed at filling this gap by investigating how developers nav-
igate through code, understand performance problems, and communicate with each other
to fix performance bugs [39]. It is based on a visual performance analysis tool [51] that we
extended to provide developers versatile means of navigation and support for comprehen-
sion. In this dissertation, we only focus on research questions related to communication and
sketching:

12 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

RQ2.1 How do developers communicate in a pair-programming setting when locating a
performance bug?

RQ2.2 Could sketches help to understand and communicate a performance bug?

In our study, we also investigated other research questions that are not in the focus of this
dissertation. Details can be found in the corresponding research paper [39].

Study Design

Our observational study was divided into three parts. Participants worked on four real-world
performance bugs using an integrated development environment (IDE) with a visual perfor-
mance analysis tool we previously developed. During the whole study, at least one researcher
was present to help participants in case of questions. All tasks were executed in the same or-
der by all teams.

Tool Support: Profiling tools record individual program runs and assign measured perfor-
mance values to code entities such as methods. While performance considerations could
include runtime, memory, or latency, we focus on analyzing runtime consumption as one of
the most prominent performance metrics. The standard user interface for inspecting profil-
ing results are lists of code entities that can be sorted by runtime consumption or organized
hierarchically to follow execution sequences. When exploring performance bugs, however,
we assumed that the source code is a valuable asset as well. Developers need to switch back
and forth between performance information and code to figure out why a certain amount
of runtime was consumed in a specific code entity and how code entities are related to each
other. Using different tools or views to explore runtime information and code could result in
considerable navigation overhead and unnecessary cognitive load. Study participants had
three different options for code navigation within the IDE: First, our study utilized IntelliJ
IDEA2, a popular IDE for Java that includes versatile options to navigate through a software
project. Second, we provided a sortable list of code entities showing performance informa-
tion comparable to standard profiling tools (see Figure 2.4). Third, we provided word-sized
visualizations to augment code entities with performance information in the code editor
(see Figure 2.5). The data for the list and word-sized visualizations was collected using a
sampling-based profiling technique. More information on those visualizations can be found
in the corresponding research papers [39, 51].

Part 1 (Tutorial): In the first part of a study session, each pair of developers was introduced
to profiling in general, the sampling and analysis approach that our tool uses, and various
features of the tool. To this end, we presented both a video introduction and slides to every
team. At the end of the introductory phase, the participants were asked to analyze the run-
time of a binary search tree implementation with two given inputs to familiarize them with
the tool.

Part 2 (Locating Bugs): After the tutorial, the teams were prompted to locate and fix four
real-world performance bugs having different levels of difficulty. After each bug fix, we con-
ducted a structured interview. The laboratory setup is depicted in Figure 2.6. The ques-
tions for the structured interviews as well as the introductory slides, the video, and the task
descriptions for each bug were presented on a laptop next to the computer running the
IDE. These materials are part of the supplementary material [40]. Applying pair program-

2https://www.jetbrains.com/idea/

https://www.jetbrains.com/idea/

2.2 Research Design 13

Figure 2.4 – List representation of code entities (methods and classes) sorted by consumed runtime
with filter options (image cropped).

Figure 2.5 – In-situ visualization of performance information within the code view for classes, meth-
ods, and method calls.

Figure 2.6 – Study setup

14 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

ming [365], one developer was in control of the keyboard and mouse (driver), while the
other team member acted as a consultant and supervisor (navigator). We switched driver
and navigator after each bug, so that each developer was driver for fixing two bugs. Partic-
ipants were asked to verbalize their thoughts, following the thinking aloud method [61]. To
assess how our participants use the profiling tool and navigate through the code, we logged
certain user actions, audio-recorded the sessions, and captured the screen. This enabled
us to analyze the understanding process and the communication between the participants.
The pair programming setting in conjunction with the thinking aloud method makes talking
more natural compared to a study where the participant is alone. This setting is based on the
constructive interaction method described by Miyake [238], where a study design with two
participants per session is proposed to circumvent the unnatural setting where one subject
is force to talk out aloud in a situation where he or she would normally be silent. Developers
were given sheets of paper and pens that they were allowed to use at any point during the
study. To get insights into the understanding and communication process, they were asked
to sketch out the cause of the performance problem and their proposed solution. This is a
realistic scenario because sketches and diagrams play an important role in the daily work of
software developers [28, 84]. We recorded the whole sketching process using an HD video
recorder pointed at the area on the table where pen and paper were placed. This allowed
us to analyze developers’ understanding of the performance problem using the externalized
mental model, the sketch.
Part 3 (Questionnaire): In the third and last part of a study session, participants were asked to
fill out a questionnaire with questions about demographic data, work experience, experience
in different areas (see Section 2.4.2), and the usability of the tool.

Performance Bugs: The four performance bugs we used for our study were taken from the
Apache Commons Collections project3 (bugs 1–3) and the collect package of the Guava
Libraries project 4 (bug 4). We selected those projects because they were mentioned to
contain interesting performance bugs [184, 249], are understandable without specific prior
knowledge, and are implemented in Java. All chosen performance bugs were well docu-
mented and code illustrating the bug was provided. Since many performance bugs manifest
only for particular inputs [184, 249], we prepared test classes to reproduce each bug. At the
beginning of a session, participants were asked to open the test class for the correspond-
ing bug and start the profiling. They were free to modify or extend the test class if needed. In
case teams got stuck with one of the bugs, we also prepared advice on how to proceed, which
the instructor provided on demand (available as supplementary material [40], together with
links to the bug descriptions).

3http://commons.apache.org/proper/commons-collections/
4https://github.com/google/guava

http://commons.apache.org/proper/commons-collections/
https://github.com/google/guava

2.3 Results: Online Survey 15

2.3 Results: Online Survey

In this section, we present the methods we used to analyze the survey data, describe the
survey participants, and report on how the data answers research questions RQ1.1-RQ1.5
(see Section 2.2.2).

2.3.1 Methods

We analyzed the responses to the closed-ended questions by means of descriptive statistics
and quasi-experiments [289], and the responses to the open-ended questions using open
coding [98]. The results of the quasi-experiments are shown in Table 2.3 The first column
indicates the grouping (or quasi-independent) variable, that is the variable which was used
to divide the responses in two or more groups. These groups were then analyzed using the
variable in the second column (the dependent variable). Since we used pairwise deletion of
missing values and in some cases ignored the middle values of the 6-point Likert scales (2,3),
we state the number of responses for each group and variable (n). Furthermore, we provide
the median (Mdn), the mode (Mod), and the interquartile range (IQR).

We applied the non-parametric Wilcoxon rank-sum test (W) [363] to test whether the dis-
tributions in the two groups differ significantly. We did not use parametric tests because our
variables did not have interval scaling and not all variables were normally distributed. Likert
items, for instance, provide only ordinal data, because the intervals between scale values are
not equal [183]. As shown in the table, all presented group pairs have significantly differ-
ent distributions (all p-values < 0.05). We calculated Spearman’s rank correlation coefficient
(ρ) [303] to test the statistical dependence between two variables. This coefficient works on
ordinal data and does not require normal distribution. The values range between +1 and
−1. A positive value indicates a positive correlation, i.e., if one variable increases, so does the
other; a negative value of ρ indicates a negative correlation, i.e., the variables vary in oppo-
site directions. Our interpretation of the values of ρ is based on the following scheme: weak
(0.1 ≤ |ρ| < 0.3), moderate (0.3 ≤ |ρ| < 0.5), and strong (0.5 ≤ |ρ| ≤ 1), which is derived from
Cohen’s definitions [93]. Apart from a few exceptions, we only considered results having at
least a moderate correlation. To measure the effect size, we used Cliff ’s delta (δ) [91]. Its
values range between +1, when all values of the second group were higher than the values
of the first group, and −1, when the reverse was true. Moreover, we provide the confidence
interval of δ at a 95% confidence level.

The qualitative data was generated by the three open-ended questions in our question-
naire. In total, 343 respondents (87%) answered the questions asking why or why not they
archived their sketch. Furthermore, we received 69 general remarks (18%) with diverse opin-
ions on the respondents’ usage of sketches and diagrams. We analyzed the answers using
open coding [98] and assigned them to categories. In the following, we will refer to state-
ments made by participants in the open-ended questions using their ID (e.g., P12 meaning
the participant with ID 12).

2.3.2 Survey Participants

Overall, 394 persons with a median age of 34 filled in our questionnaire. Of those 394 par-
ticipants, 361 identified as male, 11 as female, and 22 preferred not to disclose their gender

16 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

Table 2.3 – Quasi-experiments: Wilcoxon rank-sum test (W), Spearman’s rho (ρ), and Cliff’s delta (δ).
One asterisk indicates that the two-tailed p-value is smaller than 0.05, two asterisks indicate a p-value
smaller than 0.01. CIδ: confidence interval of δ at 95% confidence level.

G.Var Var Group 1 Group 2 W ρ δ CIδ
Value(s) n Mdn Mod IQR Value(s) n Mdn Mod IQR

REV
LSP

no
137 3 2 3

yes (once)
yes (multiple times)

233 5 6 2 7106∗∗ 0.37∗∗ 0.43 (0.32,0.53)
FOR 136 1 0 2 243 2 1 2 43858∗∗ 0.26∗∗ 0.30 (0.19,0.41)
ARC 130 0 0 1 234 1 1 1 63024∗∗ 0.24∗∗ 0.26 (0.15,0.36)

LSP
EFF

0, 1, 2
84 0 0 1

5, 6, 7
189 1 1 1 25095∗∗ 0.51∗∗ 0.60 (0.49,0.69)

ARC 79 0 0 1 179 1 1 0 30358∗ 0.49∗∗ 0.56 (0.43,0.66)

ARC

LSP

no

139 3 2 2

yes (paper),
yes (digital),
yes (both)

218 6 6 2 6344∗∗ 0.49∗∗ 0.58 (0.48,0.66)
EFF 141 1 0 1 228 1 1 1 44991∗∗ 0.46∗∗ 0.51 (0.41,0.60)
HES 130 2.5 1/3 3 220 4 5 2 11940∗∗ 0.41∗∗ 0.48 (0.37,0.58)
HEO 133 2 3 3 222 4 5 2 14671∗∗ 0.41∗∗ 0.47 (0.36,0.57)
FOR 140 1 0 2 227 2 1 3 39819∗∗ 0.36∗∗ 0.42 (0.31,0.52)

MED
CON trad., int.

whiteboard
77 2 2 1

paper 156 1 1 1 8814∗∗ -0.44∗∗ -0.50 (-0.61, -0.36)
CON comp., tablet 157 1 1 1 7929∗∗ -0.29∗∗ -0.33 (-0.46, -0.19)

MED

LSP

paper, trad.
whiteboard

219 4 4 3

computer, tablet,
int. whiteboard

155 6 6 2 5814∗∗ 0.54∗∗ 0.62 (0.52,0.70)
ARC 211 0 0 1 157 1 1 0 12403∗∗ 0.53∗∗ 0.56 (0.47,0.64)
EFF 226 1 1 1 161 2 2 1 40763∗∗ 0.47∗∗ 0.52 (0.42,0.60)
FOR 228 1 0 2 158 3 4 3 36741∗∗ 0.44∗∗ 0.50 (0.40,0.60)
UML 224 0 0 2 157 3 0 4 47448∗∗ 0.33∗∗ 0.37 (0.26,0.48)
HEO 212 3 3 3 158 4 4 2 13219∗∗ 0.30∗∗ 0.35 (0.23,0.45)

HES
LSP

0, 1
67 3 2 3

4, 5
196 6 6 2 2752∗∗ 0.42∗∗ 0.55 (0.42,0.66)

ARC 64 0 0 1 194 1 1 0 18915∗∗ 0.42∗∗ 0.50 (0.36,0.62)

HEO
LSP

0, 1
75 3 2 2

4, 5
179 6 6 2 2321∗∗ 0.50∗∗ 0.62 (0.49,0.72)

ARC 73 0 0 1 180 1 1 0 16290∗∗ 0.43∗∗ 0.58 (0.48,0.66)

COU
CRE

DE
211 3 3 1

other countries
182 3 3 2 4983∗∗ -0.07 0.08 (-0.04,0.19)

USE 198 3 3 2 170 3 3 2 14535∗∗ -0.09 0.10 (-0.01,0.22)

Of the participants that indicated their age, 74% were between 20 and 40 years old and 24%
were older than 40, but younger than 60. The respondents worked in 32 different countries,
most of them in Germany (54%) or North America (15%).

52% of our respondents worked as software developers, 22% as software architects. The
rest included project managers (5%), consultants (5%), industrial as well as academic re-
searchers (6%), and students (5%). 86% of them spent most of their work time developing
software; the median value was 80%. 47% had more than 10 years of professional work ex-
perience, while 21% had less than 5 years. The median professional work experience was 10
years. The respondents worked with companies of very different sizes (27% with up to 50 em-
ployees and 29% with more than 1000 employees) and the application areas of their projects
included software tools, web development, financial services, automotive, manufacturing,
and health, to name a few.

Since over half of our participants came from Germany, we were interested if their answers
were consistent with the answers of non-German participants. To this end, we employed
quasi-experiments to compare these groups and found, beside demographic data, no major
differences (see Table 2.3 for the results of this test for variables creation and usage).

2.3.3 Findings

With the results of the quasi-experiments, the qualitative data, and descriptive statistics, all
collected with our online survey, we can now answer research questions RQ1.1-RQ1.5. When
using data from Table 2.3, we provide the values of the first two columns to identify the row
we are referring to, e.g., (REV,FOR) refers to the second row.

2.3 Results: Online Survey 17

Creation, Usage, Effort, and Revision (RQ1.1)

To assess the frequency of sketch creation, we asked respondents when they created their
last sketch. 24% created their last sketch on the same day, another 39% within a week, an-
other 22% within a month, and another 14% created their last sketch more than one month
ago. Hence, 64% of the sketches were created at most several days ago. We also asked the
respondents about the last time they used (looked at, modified, extended) a sketch that was
not created by themselves. 27% used it on the same day, 34% within a week, 17% within a
month, and another 15% used it more than one month ago. Thus, 61% of the respondents
used a sketch made by someone else at most several days ago. Overall, most respondents
(77%) created and/or used sketches within the previous week.

To assess the effort of creating a sketch, we asked the respondents to estimate the effective
work time that went into the creation and revision of the sketch. If several persons were
involved, we asked them to add up their individual work times. More than two thirds (68%)
of the sketches were created in less than one hour, 25% were created in several hours and in
only four cases, the creation of the sketch took more than five days.

After creation, about 15% of the sketches were revised once, and 47% multiple times. 73%
of the sketches that were not revised were created on analog media, compared to 49% of
the revised ones. The median lifespan of revised sketches was several weeks, whereas the
median lifespan of non–revised sketches was several hours (REV,LSP). Revised sketches were
also more likely to be archived (REV,ARC) and less informal (REV,FOR).

It was common that people created a new version of an outdated sketch, extended an ex-
isting one, or just captured their analog whiteboard drawings. P75 named an example for the
latter: He wrote that he and his team “always take a photograph of the sketch (we all have
smartphones!) and email the photo to the team members and place it in a shared wiki as
well”. Another transition was described by P193, who wrote that he “started with a white-
board drawing, then a more detailed pencil&paper sketch, and eventually it was modeled in
yEd.” Similar workflows were reported by P41, P52, and P149.

Sketches were not only redrawn, but were also transcribed to other representations. P173
noted that his sketch will be “replaced by textual documentation”, similar to P222, who speaks
of “formalization [...] in text form”, meaning source code comments. An example for digital
recreation is P238’s sketch, which “has been transformed digitally by using a sketch tool and
added to the development documentation”. If the sketch is to be stored digitally, several re-
spondents named wikis or version control systems. P21, for example, wrote that if a sketch
helps him or others “to understand a concept that surely will have to [be] explained or un-
derstood again later”, he recreates it digitally and places it “in a public archive e.g. in a wiki
or version control repository”.

However, there are not only transitions that involve changes or recreation, but also simple
transitions like giving it to a colleague (e.g., reported by P186). A sketch may also be replaced
simply by a mental model that the creator built with the help of the sketch [204]: P373, for
instance, wrote that his sketch supported “knowledge transfer from explicit (paper) to tacit
(in head) knowledge”.

Recreating sketches digitally for documentation seems to be a common use case. P247
mentioned that his sketch “has been transformed digitally by using a sketch tool and added
to the development documentation”. Similar workflows were, for instance, reported by P21,
P23, and P290. Once the sketches were digital, it was easier to update them. P305 wrote
about his digital sketch that “over the next several months we will be working from it and

18 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

changing it as we learn”. P89 stated that he always starts “a new project with a diagram,
which is modified as work progresses”.

RQ1.1 (Creation, Usage, Effort, and Revision): Creating and using sketches are fre-
quent tasks among software practitioners. Most sketches were created in less than one
hour and more than half of them had been revised. Transitions between different types
of media were common.

Lifespan and Archiving (RQ1.2)

We asked the participants to estimate the lifespan of their sketch, i.e., how long they did or
will use it. 21% used it for less than one hour, 9% at most for one day, 32% for less than
one month, and another 33% for one month or more. The median lifespan was several
weeks. Less effort went into the creation of sketches with a short estimated lifespan (LSP,EFF).
These sketches were also less likely to be archived than those with a longer estimated lifespan
(LSP,ARC).

Overall, more than 58% of the sketches were archived (6% only on paper, 42% digitally,
and 10% both, digitally and on paper). Almost all digital sketches were archived (94%), but
also 38% of the analog ones. More effort went into the creation of archived sketches (ARC,EFF)

and the lifespan of those sketches was estimated to be several months—compared to sev-
eral hours for sketches that were not archived (ARC,LSP). Archived sketches were more formal
(ARC,FOR) and would more likely help the respondent (ARC,HES) or others (ARC,HEO) to understand
the related source code artifact(s) in the future.

We asked the respondents to comment on why or why not they archived their sketch. We
categorized the answers to both questions independently and identified nine categories in
total: Four categories indicating why a sketch was archived, four categories indicating why
not, and one category for all answers with hints on the general archiving practice. Please note
that the categories are not disjoint and have different granularity. One answer may belong to
several categories.

Reasons for Archiving a Sketch

To the first category, we assigned answers indicating that the sketch or diagram was kept
as documentation. The majority of answers in this category pointed out that the sketch doc-
uments the implementation, e.g., the architecture, structure, states, or data flows. Many
respondents explicitly mentioned the documentation of source code artifacts like APIs, com-
ponents, or test cases. Some of them reported on the documentation of requirements and
specifications, decisions, ideas, solutions, or discussions. P365 archived his sketch because
it “document[s] the discussion” and it will be used to “further investigate into [the] sketched
idea”. However, sketches may also document mistakes. P327 wrote that he archived his
sketch to “trace the cause of decision” and that the sketch “could be useful to explain our
mistake later”. P369 stated that he posted his diagram on the wall of his office, because
“charts and diagrams document where you have been, what [you] were [...] thinking, and
where [...] you intend to go”.

To the second category, we added answers pointing out that the sketch was or will be
archived for future use. A common reason for archiving a sketch was to be able to refer-
ence it in the future. Other future uses included reusing the sketch as a template, as well as

2.3 Results: Online Survey 19

updating, refining, expanding, or digitally recreating it. Furthermore, sketches were used for
planning, bug fixing, as a reminder, or for communication with customers or team members
(e.g., as input for a discussion). Sketches and diagrams were also used during implementa-
tion or for code and interface generation. Several respondents stated that they archived their
sketch to be able to explain parts of the software system or ideas to other stakeholders (e.g.,
for onboarding new staff). P5, for example, wrote that he “may want to type [his sketch] up
and document to help future newbies understand the project”.

The visual artifacts in the third category support understanding and were thus archived.
The answers showed that understanding the implementation was a central aspect. Some re-
spondents archived their sketch because it helped them to understand the whole project,
others named the understanding of processes, workflows, problems, ideas, or decisions.
P162 wrote that his sketch “greatly aids in understanding the basic architectural concepts”.
P340 even stated that “it will be difficult to understand the code” without the diagram. Evo-
lution was an important aspect. P25, for example, noted that he kept his sketch “to under-
stand the evolution of ideas” and “to understand why certain solutions were chosen”. Many
sketches change quickly and are being iterated. However, P156 noted that his “general archi-
tecture sketch [...] will help others understand communication and probably won’t change
in the forthcoming months”. An interesting remark by P233 highlights the connection of
sketches and ideation. He wrote that he keeps sketches “as a personal archive of knowledge
and ideas”.

The fourth category, named visualization, is closely related to the previous one. However,
many participants explicitly mentioned that they archived their sketch because it visualizes
a process, problems, requirements, software, or other concepts. Some mentioned that they
prefer visual representations of software over text. P21, for instance, wrote that his sketch
“is stored [...] in case I or someone else analyzes the sketched part of code. This way, it can
be quickly understood due to the visual representation without hours of digging through
complex source code”. P145 noted that his sketch ”explains a data flow better than in spoken
words”. P162 even states that his sketch “shows concepts that are not directly visible from
code”. Sketches reduce the cognitive load, as P85 reported: “I generally use them to visualize
a process that I can’t keep in my head all at once [...].” P21 noted that he can “browse and
process visual information by far easier and quicker than textual information”. Therefore, he
thinks that sketches and diagrams are “always [...] a very useful investment [...]”. The team of
P65 uses flip chart sketches for code reviews, because “it helps to get a grasp on the structure
and make the code concrete and available to the involved persons”.

Reasons for Not Archiving a Sketch

The main reason why respondents did not archive their sketch was that they thought it
served its purpose and, thus, was not worth keeping. The named purposes included under-
standing, explaining, visualizing, designing, communicating, prototyping, problem solving,
and structuring thoughts, ideas, or the implementation. P2, for instance, wrote that he did
not archive his sketch because he “just created it to visualize a very special situation in the
work flow of the program”. P6 mentioned that he used his sketch to “think through a prob-
lem” and it had “no value as a long-term reference”. A similar answer was given by P14, who
stated that the sketch was just used to “make something clear in the very moment”. Another
purpose of these short-time sketches was debugging, as noted by P73 (see also the results of
our observational study, where we investigated how developers use sketches when locating

20 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

performance bugs, Section 2.4). Usage during discussions was reported by P157, who wrote:
“The sketch was only used to gain understanding and to quickly explore some alternative
solutions during a discussion.” P99 stated: “I only use sketches to clear my mind and visu-
alize a particular problem, once it’s clear in my head I don’t need it anymore.” Interesting
is the fact that sketches were also created where documentation was available: P4 reported
that his sketch served his “own understanding of a well-documented system”. P104 noted
that he sketches architectures only to “solidify” his thoughts, similar to participant 114 who
wrote that sketches are “just a tool to help me think”. The thinking or explaining can also
happen collaboratively, as mentioned by P329, who did not archive his sketch because “it
was just a quick draft to explain a concept to a coworker”. P316 wrote that the purpose of
his sketch was to “provide a visual aspect to the conversation, [...] it only needed to be a
visual reminder of ideas and flows that people present would understand for the next thirty
minutes. It probably wouldn’t make sense to us a week later”.

The second category of answers indicated that the sketch was substituted by another rep-
resentation, for example, being replaced by a new or extended version, redrawn on another
medium, or implemented in source code. P204 stated that his sketch is “useless after im-
plementing the ideas of the sketch into source code”. This was a common reason for not
keeping a sketch, as it was reported by several participants (e.g., P7, P47, P51, P217, P256,
and P334). P332 wrote that “the code will be the final representation of the idea, the sketch
is just scaffolding”.

To the third category, we added answers indicating that the sketch was outdated. The main
reason for this was the evolution of the related software. P27 wrote that his sketch was cre-
ated to help structure “his thoughts at the time of development”. He continues by stating
that “the software will be developed further and diverge from the sketch over time”. Similar
situations were reported by P39, P52, P102, and P339.

In the fourth category, we summarized all answers that named some kind of technical issue
as a reason for not keeping the sketch. P78, for instance, wanted to keep his sketch, but wrote
that he had “no way to archive whiteboard drawings”. P123 reported that his sketch “ended
up in code” and “there is no good option to keep it together [with source code]”. Similarly, P2
wrote that “in case there was an easy way to combine both, code [...] and sketch I might have
thought about archiving it”. Since developers do not want to produce “unnecessary paper
trash” (P202), they do not keep their sketches longer than necessary. P259 noted that “there
is no special place where to archive” the sketch and he also addressed the issue that “nobody
would update it, if the software artifacts change”. Another problem is that contextual infor-
mation may be necessary to understand a sketch, as reported by P314. P314 wrote that his
sketch is “helpful in visualizing the data structure we’re designing” and “archiving it would
be helpful”, but they “don’t have means to archive it easily” and “it would require us to note
down lots of context—otherwise it won’t make any sense”.

Archiving Practice

To this category, we added all answers that contained hints about respondents’ general
archiving practice or the systems used for storage. Sketches were stored, for instance, in
wikis, version control systems, issue tracking systems, or emails. In case of traditional white-
boards, several respondents archived their drawing to be able to reference them in the fu-
ture. P75 archives whiteboard drawings, because “whiteboards get cleaned often, so there is
a good chance that we might lose the original sketch before the code is done”. Some partic-

2.3 Results: Online Survey 21

UML

FOR

200 100 0 100
Count

0
1
2
3
4
5Var.

Figure 2.7 – Distribution of answers for the formality of a sketch (FOR) and the use of UML elements
(6-point Likert scale items).

ipants reported that they try to archive as much as possible, like P10, who stated that “every
artifact in the process of creating a software should be archived”. This is in line with P13, who
noted that “you never know if you could need it [the sketch] again” and P265, who wrote “I
archive everything that I create”. There were also critical comments suggesting that diagrams
were archived, but not used later. P129, for instance, wrote: “[The sketch] is part of the sys-
tem documentation. But honestly [...] I don’t think that someone cares”. Four participants
named compliance or regulatory demands as a reason for keeping their sketch.

RQ1.2 (Lifespan and Archiving): One third of the sketches had an estimated lifespan
of one day or less, one third of up to one month, and another third of more than one
month. The majority of sketches were archived, most of them digitally. Many sketches
were kept because they document or visualize parts of the implementation or assist
its understanding. Sketches were not kept when the creators thought they served their
purpose, were outdated, or substituted by another representation.

Formality and UML (RQ1.3)

In the questionnaire, we defined formality as the degree to which a sketch follows a pre-
defined visual language (e.g., the UML). 68% of the sketches were rated as informal (Likert
0-2). While 27% rated their sketch as very informal (Likert 0) only 6% found their sketch to
be very formal (Likert 5). We also explicitly asked the respondents about the use of UML
elements in their sketches. While 40% of the sketches contained no UML elements at all, 9%
consisted solely of UML elements. Overall, 24% found that their sketch contained few UML
elements (Likert 1-2); another 24% found that their sketch contained more UML elements
(Likert 3-4). However, 30% of the sketches that contained more UML elements were still
rated as informal (Likert 0-2). See Figure 2.7 for a diverging stacked bar chart [268] of the
answers for the variables formality and UML.

In total, 18 of the respondents’ general remarks were about their use of UML or their gen-
eral opinion on such formal notations. The opinions ranged from completely rejecting for-
mal methods (P83) to very positive ones (P194). One argument against UML or other formal
notations was that “most of the time, you’d have to read the code anyways” (P8). P102 states
that “UML is often not known, and almost never used”. According to him, “people prefer to
code or to get code (even buggy) rather than to draw little drawings”. On the other hand,
P194 stated that he thinks that diagrams “help a lot in designing good object-oriented sys-
tems”. P210 stated that he prefers having less text documentation and more diagrams, be-
cause “people tend not to read written specifications accurately but spend more time under-
standing a diagram”. P75 reported that in his company, UML was used for formal planning,

22 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

for example between various company divisions. Most of the remarks indicated an informal
sketching practice, meaning that if UML was used, it was not used strictly as defined in the
standard (e.g., reported by P21, P94, P190, and P304). This is in accord with our qualitative
results described above. P21 wrote that usually, he creates his sketches on paper first and
“depending on the need, they range between very informal and UML-like (class diagrams,
sequence diagrams).” P314 reported that almost all the diagramming he does is “back of
the napkin type of stuff [...] sometimes it’s UMLish, sometimes it’s wireframing, sometimes
it’s flowcharting.” P190 wrote that he mostly uses UML, reports that he is “not always strict
about the semantics.” P94 noted that his team often uses “sketches to describe problems
with some design pattern or algorithm”, but “it is mostly free form sketching”, drawn in a
“natural” way that “all the people in the company will understand and NOT in some strict
UML way.” Similarly, P304 reported that he generally prefers “lean architecture diagram-
s/sketches without too much formality (e.g. UML-completeness) [...] to keep the diagrams
easily changeable, so that it is easy to adapt them to the ’reality’ coded in the system if that
changes.”

Informal UML usage also influenced the choice of medium, as P210 reported that he cre-
ates most of his sketches on paper, because they “combine UML, icons and mind-mapping
elements, as well as graphical sketches to visualize functionality.” P304 reported that he
prefers “whiteboards, flipcharts, pen & paper” and Microsoft Visio for documentation.

RQ1.3 (Formality and UML): The majority of sketches and diagrams were informal.
Whereas 40% of them contained no UML elements at all, 48% contained at least some,
and only 9% consisted solely of UML elements. Respondents’ remarks indicate that if
UML is used, it is often not used strictly as defined in the standard.

Media, Context, and Purpose (RQ1.4)

Almost 60% of the sketches were drawn on analog media like paper (40%) or traditional
whiteboards (18%). The remaining sketches were almost exclusively drawn on comput-
ers (39%). Only five sketches were drawn on an interactive whiteboard and only three on
tablets or smartphones. Sketches created on paper or digitally were most likely created alone,
whereas sketching on traditional whiteboards was more likely to be done collaboratively
(MED,CON). The medium and lifespan of a sketch were also related: Sketches created on ana-
log media (paper or traditional whiteboards) had an estimated lifespan of several work days,
whereas sketches created digitally (computer, tablet, or smartphone) had an estimated lifes-
pan of several months (MED,LSP). Furthermore, digital sketches were more likely to be archived
than analog ones (MED,ARC), they were more formal (MED, FOR), and were more likely to contain
UML elements (MED, UML). Digital sketches were also rated as being more likely to help others
in the future to understand the related source code artifact(s) (MED,HEO). Besides, more effort
was put into digital sketches (MED,EFF).

While 51% of the sketches were created by a single person, 28% by two persons, and 15%
by three persons, only 6% were created by more than three persons. Actually, only one sketch
was created by more than 10 persons. If we only look at projects with more than 10 persons,
the percentage of sketches created by more than three persons increases to 13%. Sketches to
which one or two people contributed were most likely created on paper (46%). 38% of these
sketches were created using a computer and 15% on a traditional whiteboard. When more

2.3 Results: Online Survey 23

than two people contributed to the sketch, the ratio of computer sketches increases only
slightly (43%). However, the ratio of traditional whiteboards doubles (33%) and the ratio of
paper sketches halves (17%).

RQ1.4 (Media and Context): Most sketches were drawn on analog media like paper or
whiteboards. Half of them were created by a single person and another third by two
persons—only few were created by more than three persons. Paper was predominantly
used alone, whiteboards collaboratively.

To capture the creation context, we asked for the application area, team size, and em-
ployment of model-driven or agile methods in the software project for which the sketch was
created. The most common application areas were software tools (27%), followed by web de-
velopment (18%), and financial services (11%). In 54% of the cases, the project teams never
or only rarely employed model-driven practices (Likert 0-1), whereas 42% of the teams inten-
sively employed agile methods (Likert 4-5). As mentioned before, the respondents worked
with companies of very different sizes. The most common team size was 4 to 10 (40%), 11%
of the respondents worked alone, 8% with one colleague, and 19% with two colleagues. 15%
worked in teams of 11 to 50 people, whereas only 5% worked in teams with more than 50
employees. However, we found no significant influence of the team context on the sketching
behavior of our participants.

We also asked the respondents about the purpose of their sketch. They could choose mul-
tiple answers from a given list of tasks that the sketch helped to accomplish (see Table 2.1).
The most frequent tasks were designing a new architecture (52%), designing new features
(48%), explaining an issue to someone else (46%), analyzing requirements (45%), and un-
derstanding an issue (44%); the least common tasks were reviewing source code (9%) and
debugging source code (7%). Overall, most tasks were either related to designing (75%), ex-
plaining (60%), or understanding (56%). Of the most frequent tasks only analyzing require-
ments cannot be assigned to these categories. Interestingly, the respondents who indicated
that the sketch helped them to design new GUI components were even more likely to use
analog media than the whole sample (70% vs. 60% analog media).

Three participants mentioned sketches as a medium to outline the high-level system ar-
chitecture (P8, P26, P304). One of them even stated that “everything below that level can just
be read like a book.” Sketches are also used in meetings and phone calls, as P106 reported.
He uses them to “write down problems and relationships [...] to get a better picture of cus-
tomer problems and issues, as well which areas are linked together [...]”. P374 thinks that
“sketches and diagrams are critical to understanding software projects and architectures.”
Sketching is also used to communicate with clients (P106, P112) or between “business and
development” (P224). P224 remarked that “sketches/diagrams are a basic tool in require-
ments engineering to enhance the communication between business and development.”
Furthermore, he writes that “it doesn’t care if you do it in a very formal way (only using cor-
rect [...] UML) or informal.” P330 wrote that he finds his “own diagrams more useful than
others.” Another comment regarding sketches as a medium for communication was made
by P209, who stated that “if all are confused a sketch is likely to help, especially if different
levels of technical experience work together [...].” P128 noted that “sketches and diagrams,
especially informal ones, can transport the [...] mission in a better way than documents [...].”

24 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

Count
100 0 100 200

0 1 2 3 4 5

HEO

HES

Var.

Figure 2.8 – Distribution of answers indicating whether the sketch could help the respondent (HES)
or others (HEO) in the future to understand the related source code artifact(s) (6-point Likert scale
items).

RQ1.4 (Purpose): The most common purposes for creating sketches were related to
designing, explaining, or understanding. Furthermore, analyzing requirements played
an important role.

Relation to Source Code and Value (RQ1.5)

We asked the respondents to select the software artifact(s) to which the content of their
sketch was related. They could choose multiple answers from a given list of artifacts, which
was sorted in order of increasing level of abstraction (e.g., statement, method, class, pack-
age). For each level, we not only named terms used in object-oriented programming, but
also similar concepts used in other paradigms (see Table 2.1). Furthermore, respondents
could indicate whether the sketch was related to a single instance or to multiple instances of
the chosen artifact. For the sake of brevity, we will only name one representative of each level
and do not distinguish single and multiple instances in the following. If a sketch is related
to a lower level of abstraction this normally implies that it is also related to the levels above.
Thus, we base our interpretation on the most specific artifact the participant selected, i.e.,
the artifact with the lowest level of abstraction. 9% of the sketches were most specifically
related to statements, 8% to attributes, 20% to methods, 23% to classes, 17% to packages,
and 19% to projects. We can conclude that sketches rarely pertain to certain attributes or
statements, but rather to methods, classes, packages, or projects.

We asked the respondents to assess if their sketch could help them or others to understand
the related source code artifact(s) in the future. 52% of the sketches were rated as helpful
(Likert 4-5) for the respondent, 47% were rated as helpful for others (see Figure 2.8). Helpful
sketches had a longer estimated lifespan (HES,LSP) (HEO,LSP) and were more likely to be archived
than not helpful sketches (HES,ARC) (HEO,ARC).

RQ1.5 (Relation to Source Code and Value): Sketches were rarely related to certain at-
tributes or statements, but rather to methods, classes, packages, or projects. About half
of the sketches were rated as helpful to understand the related source code artifact(s) in
the future.

2.3.4 Correlations

To estimate the strength of the correlations between the captured sketch dimensions we used
Spearman’s rank correlation coefficient ρ. To test the significance of each correlation coeffi-

2.3 Results: Online Survey 25

Table 2.4 – Correlation table with Spearman’s correlation coefficient ρ (one asterisk: significant at the
0.05 level, two asterisks: remains significant after Bonferroni correction).

ρ UML FOR ARC EFF LSP REV

UML -

FOR 0.62∗∗ -

ARC 0.26∗∗ 0.37∗∗ -

EFF 0.27∗∗ 0.39∗∗ 0.47∗∗ -

LSP 0.26∗∗ 0.38∗∗ 0.52∗∗ 0.50∗∗ -

REV 0.17∗ 0.26∗∗ 0.24∗ 0.45∗∗ 0.36∗∗ -

n 384 389 371 390 377 383

cient, we computed the two-tailed p-values and checked whether these p-values were both
less than α = 0.05 and α = 0.05/15 (Bonferroni correction [120], total number of 15 correla-
tions). Since we did not start with apriori hypotheses about the correlations, we only consid-
ered moderate and strong correlations that were significant after Bonferroni correction.

The results are shown in Table 2.4: We found the strongest correlation between formal-
ity and UML, but archiving and lifespan, and effort and lifespan, also have strong corre-
lations. All pairwise correlations of the four variables formality, archiving, effort, lifespan
and the three variables effort, lifespan, revision are at least moderate. The number of revi-
sions is moderately correlated to lifespan and effort. Correlation does not imply causality,
but the above-mentioned correlations can still help us understand the creation and usage of
sketches and diagrams in practice. For example, the correlations of variable effort can be put
in other words: The more effort is put into a sketch, the more likely it is that it will be used
for a longer time, that it will be archived, and that it will be more formal. To further investi-
gate the connection of formality, archiving, effort, and lifespan, which each correlate at least
moderately, we analyzed the open-ended answers and searched the data for sketches illus-
trating these correlations: P156 created his rather formal sketch (formality: 3) using a tradi-
tional whiteboard and archived it digitally. He spent several hours creating it and estimated
its lifespan to be more than one year, noting that it is a “general architecture sketch” that
“will help others understand communication and probably won’t change in the forthcoming
months”. Another example is the formal sketch (formality: 5) of P122 that was created in
more than 5 work days. It was a “state diagram” created digitally that is “needed as long as
the program exists” (lifespan: more than one year). The above examples are sketches that
have high values for the considered variables. However, there are also examples for sketches
at the other end of the spectrum. P73 created his informal sketch (formality: 0) in less than
ten minutes on paper. The sketch had an estimated lifespan of only several minutes and was
not archived, since it was a “temporary sketch for debugging”.

Correlations: Formality, archiving, effort, and lifespan each correlate at least moder-
ately. This is also the case for effort, lifespan, and revision.

26 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

2.4 Results: Observational Study

In this section, we present the methods used to analyze the data we collected with our ob-
servational study, describe the study participants, and report how the data answers research
questions RQ2.1 and RQ2.2 (see Section 2.2.3).

2.4.1 Methods

The study sessions lasted between 94 and 164 minutes (mean value: 121 minutes), resulting
in over 12 hours of audio and video recordings. To answer the research questions formulated
in Section 2.2.3, we first analyzed the transcribed answers of the interviews following each
bug locating task (bug 1–4). To this end, we conducted a cross-case analysis [287]: We started
with the interview transcripts of the first two teams and wrote down short summaries of par-
ticipants’ statements related to the research questions. Then, we compared these statements
to determine similarities and differences. The result of this step was a list with preliminary
propositions, based only on the answers of the first two teams. For each proposition, we
wrote down the statements supporting or refuting it. For all remaining groups, the follow-
ing process was repeated: We analyzed the answers of the next team and compiled a list of
statements. Then, we determined if any of those statements supported or refuted the exist-
ing propositions. Supporting statements were added to the corresponding proposition. In
case a statements refuted a proposition, either the proposition was revised or the statement
was added to the list of refuting statements for that proposition. Any additional propositions
suggested by the team’s statements were added. The result of this process was a final list of
propositions each with a set of supporting and refuting statements. We decided to drop all
propositions with less than four supporting statements.

For a detailed analysis of code navigation (based on the interaction logs we collected) and
verbal communication (based on our audio and video recordings), we focused on bug 3. We
assumed that, when starting with the third bug, the participants were familiar with the tool
and had some hands-on experience with the Apache Commons Collections library. More-
over, according to our observations, this bug was the most difficult one to locate and fix.

To be able to answer RQ2.1, we transcribed the audio recordings from all sessions for Bug
3. Then, the author of this dissertation employed an open coding approach [81, 98] and it-
eratively assigned codes to each statement of the participants: In a first initial coding phase,
the transcripts were coded on a statement level and memos were utilized to structure emerg-
ing patterns and similar codes. In a second, focused, coding phase the codes were revised
or merged where applicable, concentrating on how the team members interacted with each
other. During this phase, we iterated over the transcripts several times. For RQ2.1, we again
utilized the transcribed recordings, but we also integrated results from the cross-case analy-
sis described above.

2.4.2 Study Participants

The twelve software developers who participated in the study were all male and between 22
and 43 years old (M = 30.7 years). They had between 0 and 15 years of professional work
experience in software development (M = 4.4 years). As summarized in Tables 2.5 and 2.6,
three participants worked as software developers, four were research assistants in a com-
puter science department (two of them worked full-time in the software industry before),

2.4 Results: Observational Study 27

Table 2.5 – Participants of observational study: Team assignment, current occupation, and profes-
sional work experience.

Team Participant Current Occupation Work Experience
(years)

T1
P1 Research assistant 5
P2 Research assistant 5

T2
P3 MSc student, industry exp. 1
P4 MSc student, industry exp. 3

T3
P5 Software developer 3
P6 Diploma student 4

T4
P7 MSc student 0
P8 MSc student 0

T5
P9 Research assistant, industry exp. 10

P10 Research assistant, industry exp. 6

T6
P11 Software developer 15
P12 Software developer 1

Mean: 4.4

Table 2.6 – Participants of observational study: Experience in object-oriented programming, Java,
collections and data structures, IntelliJ, other IDEs, fixing performance bugs, our tool, and profiling
tools in general.

Participant Experience (no exp. = 0 to 4 = expert)
OOP Java Collec. IntelliJ IDEs P.Bugs Tool Profil.

P1 4 4 3 3 3 1 1 0
P2 4 4 4 1 4 2 1 1
P3 3 3 2 0 3 1 0 2
P4 3 3 3 1 2 1 0 1
P5 4 3 4 1 3 3 1 2
P6 3 3 3 4 2 1 1 0
P7 3 2 3 1 2 1 0 0
P8 1 1 0 0 1 1 0 1
P9 3 2 3 0 4 4 0 3

P10 2 2 2 3 1 3 0 2
P11 3 1 3 0 3 2 1 2
P12 3 3 2 2 2 1 0 1

Mean: 3.0 2.6 2.7 1.3 2.5 1.8 0.4 1.3

28 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

Table 2.7 – Codes assigned to developers’ interactions during performance bug location.

Code Description

DC Describes source code (e.g., data structure, architecture, algorithm)
HC Expresses hypothesis about how the source code works.
DR Talks about runtime or refers to profiling data
HR Expresses hypothesis about runtime
QC Question regarding source code (e.g., data structure, architecture, algorithm)
QR Questions that explicitly mentions the runtime or profiling data
PN Prompt to navigate (e.g., “go to this method”)
PI Prompt to implement (e.g., “you have to write for (int i: ...)”)

CO Disrupting comment (e.g., “Stop! We have to...”)
RD Reads documentation/source code comment aloud
RC Read source code aloud
RE Reference to source code (“There is the problem.”)

and five were graduate students enrolled in a computer science program (two of them were
working half-time as software developers in industry). In total, ten participants had profes-
sional work experience in software development (between 1 and 15 years). We asked the par-
ticipants to rate their experience in different areas related to the study on Likert scale items
ranging from 0 (no experience) to 4 (expert). Summarizing the ratings, participants had a
good level of experience in object-oriented programming, the Java programming language,
collections and data structures, and working with integrated development environments.
Four participants had no experience with the IntelliJ IDEA IDE. However, this did not seem
to cause any problems during the study, presumably because modern IDEs have quite sim-
ilar features and our participants got used to the unfamiliar IDE quickly. Every participant
had at least some experience in fixing performance bugs, but only five participants were ex-
perienced (experience ≥ 2). Most of them did not know our profiling and visualization tool
before. The experience with profiling tools in general was rather low. Nevertheless, in each
team, there was at least one member having some experience with profiling tools.

2.4.3 Findings

With the data collected and prepared as described above, we can now answer research ques-
tions RQ2.1 and RQ2.2.

Communication during Performance Bug Location (RQ2.1)

Table 2.9 shows the results for the twelve codes we base our analysis on; Table 2.7 provides
descriptions for the codes. The complete coding and data for each session are available as
supplementary material [40]. The locating phase for bug 3 lasted between 20 and 35 min-
utes. Four teams created a working fix, but all teams needed help by the instructor. Team T5
created a fix that altered the semantics of the data structure and, for team T6, the instructor
had to reveal the complete solution before they were able to implement a fix. In the follow-
ing, we will describe the communication behavior of the teams based on the transcripts and
codes.

2.4 Results: Observational Study 29

Table 2.8 – Statistics about team activity for performance bug 3: Duration of locating phase, success
(X: bug fixed, ×: not fixed, ◦: bug fixed, but semantics changed), interaction frequency, and point in
time when the first runtime hypothesis was formulated.

Team Success Duration Interaction frequency First hypothesis formulated
(min.) (interactions/min.) (first code HR/all codes)

T1 X 30 5.5 120/165 (73%)
T2 X 30 3.7 8/112 (7%)
T3 X 24 3.2 27/78 (35%)
T4 X 35 3.8 86/136 (63%)
T5 ◦ 20 2.4 12/48 (25%)
T6 × 24 1.7 14/40 (35%)

Mean: 27 3.4 40%

Table 2.8 provides statistics about the activity of each team when working on performance
bug 3. This data, together with the data in Table 2.9, shows that team activity was quite
diverse. T1 communicated the most (5.5 interactions/min.), T6 the least. The least commu-
nicative team was also the only one not able to fix performance bug 3.

Most teams expressed their first hypothesis about a possible performance problem in the
first half of the session and two teams (T1, T4) in the second half. The role of the navigator
differed across the teams: In half of the teams (T1, T4, T5), the navigator was very active,
asking questions about the source code or profiling data (value in column QC+QR >75%),
prompting the driver to navigate to certain methods (PN) or dictating when the driver was
writing source code (PI). In T2, the communication was rather balanced between driver and
navigator. The passive navigators in T3 and T6 mostly observed and infrequently interacted
with the driver. In all except one team (T5), the navigator expressed interrupting comments
(CO), e.g., to indicate his notion of a piece of code. In most cases, the navigator responded to
these comments. However, two teams stand out: In T3, the driver almost completely ignored
the navigator’s comments and continued with his source code descriptions and hypothe-
ses (DC+HC 83%, DR+HR 85%). We observed similar behavior for T5, where the navigator
took over the role of the driver and finally implemented the solution himself. One reason
for the dominant driver in T3 and the rather dominant navigator in T5 could be a differ-
ence in expertise: Both the driver of T3 and the navigator of T5 rated themselves as more
experienced in OOP, collections, and fixing performance bugs compared to their teammates
(see Table 2.6). When understanding the program, it was quite common to point to source
code and read it or the related documentation aloud (RE+RC+RD). The role of the navigator
is often described as thinking strategically instead of focusing on the implementation [87].
However, in our study, driver and navigator mostly worked on the same level of abstraction,
for instance when reading source code aloud or talking about it (DC+HC).

Communication during Bug Location (RQ2.1): Most pair programming teams formu-
lated a hypothesis for the cause of the performance bug early and then discussed the
architecture and algorithms related to the bug. Within a team, the role of the navigator
can range from active (posing questions, commenting) to passive (mostly observing).

30 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

Tab
le

2.9
–

In
teractio

n
s

w
h

ile
lo

catin
g

p
erfo

rm
an

ce
b

u
g

3:D
u

ratio
n

o
flo

catin
g

p
h

ase,su
ccess

(X
:b

u
g

fi
xed

,×
:n

o
tfi

xed
,◦:b

u
g

fi
xed

,b
u

tsem
an

tics
ch

an
ged

),
p

air
p

ro
gram

m
in

g
ro

les
(asterisk

in
d

icates
th

atn
avigato

r
to

o
k

over
ro

le
o

fd
river),co

d
es

(d
escrip

tio
n

in
Tab

le
2.7),an

d
p

o
in

tin
tim

e
w

h
en

sketch
es

w
ere

u
sed

(D
:d

u
rin

g,A
:after

lo
catin

g
th

e
b

u
g).

Team
D

u
ratio

n
Su

ccess
D

river
N

avigato
r

C
o

d
es

Sketch
(m

in
.)

To
tal

D
C

+H
C

D
R

+
H

R
Q

C
+Q

R
P

N
+P

I
C

O
R

D
+R

C
+R

E
O

th
er

T
1

30
X

165
46

11
28

5
10

11
54

D
P

2
45%

57%
55%

21%
0%

20%
55%

54%
P

1
55%

43%
45%

79%
100%

80%
45%

46%

T
2

30
X

112
21

19
24

9
6

9
24

A
P

4
57%

67%
58%

54%
11%

33%
56%

75%
P

3
43%

33%
42%

46%
89%

67%
44%

25%

T
3

24
X

78
18

13
10

6
7

3
21

A
P

5
63%

83%
85%

90%
0%

0%
100%

52%
P

6
37%

17%
15%

10%
100%

100%
0%

48%

T
4

35
X

136
24

22
20

15
7

10
38

D
P

7
46%

58%
68%

20%
0%

29%
20%

68%
P

8
54%

42%
32%

80%
100%

71%
80%

32%

T
5

20
◦

48
14

9
10

2
0

2
11

D
P

10 ∗
35%

21%
44%

30%
0%

0%
100%

45%
P

9 ∗
65%

79%
56%

70%
100%

0%
0%

55%

T
6

24
×

40
15

13
1

2
3

0
6

D
P

12
63%

73%
77%

0%
0%

0%
0%

67%
P

11
38%

27%
23%

100%
100%

100%
0%

33%

2.4 Results: Observational Study 31

Table 2.10 – Propositions based on cross-case analysis of interview answers related to the role of
sketching when locating, understanding, communicating, or fixing performance bugs.

No. Proposition Teams

3.1 Sketches are a useful tool for explaining a performance bug, but context
information is needed to understand them afterwards.

T1, T2, T4, T6

3.2 Sketches are a suitable documentation means (if “polished” enough). T1, T2, T3, T4, T6
3.3 If and how much sketching occurs depends on the sketching experience

of the developers.
T1, T2, T5, T6

3.4 A common sketch vocabulary is needed in the team. T1, T2, T5
3.5 More complex problems or data structures are more likely to be

sketched.
T1, T2, T4, T6

3.6 Sketches can be used to explain dynamic aspects of a program. T1, T2, T4

Figure 2.9 – Sketches used to explore alternatives (left) and dynamic behavior (right).

Sketching to Understand and Communicate Performance Bugs (RQ2.2)

Four teams created a sketch spontaneously while locating bug 3, the other two were asked
to sketch the problem and their solution afterwards (see Table 2.9). Some teams sketched
only the static structure of a MultiValueMap (T1, T4, T5), others expressed also dynamic
aspects such as the execution of method contains(...) (T2, T3, T6; see Figure 2.9).
Expressing dynamic behavior was also mentioned several times during the interviews (see
Table 2.10, Proposition 3.6). Despite only depicting the static structure, teams T1 and T4 ref-
erenced their sketch several times during the session; team T4 used it to explore alternative
hypotheses about the data structure (see Figure 2.9). In all teams that created sketches dur-
ing the location phase, the navigator sketched the data structure and explained aspects of it
to the driver.

During the interviews, developers rated sketches as being a useful tool for explaining per-
formance bugs to someone else, especially when trying to understand the data structures
in use (e.g., the MultiValueMap). However, it is not only the artifact that matters but the
whole context of creating a sketch (e.g., order of creation, related source code, conversation)

32 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

(Proposition 3.1). This makes it difficult to use the sketches afterwards for explaining the
problem to someone else, but if they are edited and “polished” enough, they may be used for
documenting a bug fix (Proposition 3.2). Generally, the participants noted that the sketch-
ing practice depends on the experience of the developers (Proposition 3.3). One participant
even reported a “training effect” while sketching the team’s solution for bug 2. Furthermore,
participants pointed at the need of a common sketch vocabulary for the team (Proposition
3.4). This vocabulary can be informal and may emerge during a meeting. P3, for instance,
noted that in his team, they agreed on the convention that “the circle with the dots is always
a hash set.” Also, more complex problems or data structures are more likely to be sketched
(Proposition 3.5). Several participants reported that there is a point when it becomes too
difficult to keep a problem or a data structure in the mind. This is when a sketch is created
and hence the developer’s mental model gets externalized.

Sketching to Understand/Communicate Performance Bugs (RQ2.2): Sketching is a
useful tool to explain performance problems to co-workers, but to use the created sketches
as documentation, they usually need to be revised.

2.5 Limitations and Threats to Validity

To mitigate the “lone researcher bias” [71] in the qualitative analysis of the survey answers,
we applied multiple coding [48]: Two researchers performed the coding independently, be-
fore they discussed the results and agreed on common categories. For the observational
study, one co-author of the corresponding paper [39] conducted the initial cross-case anal-
ysis. Again, to mitigate a lone researcher bias, the author of this dissertation and another
co-author discussed and revised this initial analysis. The coding of the interview transcripts
was conducted by the author of this dissertation alone. Most of the quantitative results were
computed independently by two researchers [28]. Nevertheless, there exist possible threats
to the validity of our results, which we address in the following.

External Validity of Online Survey Results It is obvious that drawing a random sample
from the global population of software practitioners was impossible for us. We had to rely
on available subjects, which is known as convenience sampling [17, 29, 168] or opportunity
sampling [288]. Since we asked people to spread the link to our online questionnaire, we
also applied a kind of snowball sampling [17]. We had only little control over the represen-
tativeness of our sample, because the participants were selected by the channels we used
to contact them. However, we tried to mitigate this threat to external validity by describing
our sample in detail to ensure comparability to results of other studies and available de-
mographic data about the target population. Furthermore, we named the channels used to
contact participants and report on their effectiveness regarding the amount of answers they
presumably generated (see also Section 5.2.2). Since most of our respondents were from Ger-
many (54%), the question arises how strong the influence of this geographical bias is. Thus,
we computed the descriptive statistics and correlations for both German (n = 211) and non-
German (n = 183) respondents and report on salient differences. The correlations we found
for the complete sample were also present in the German and non-German samples. How-
ever, for the non-German sample, the median lifespan was shorter (several weeks instead

2.5 Limitations and Threats to Validity 33

of several month) and sketches were more likely to be revised (median value 2 (German) vs.
1 (non-German)). The median age and work time dedicated to software development were
the same, but non-German respondents had a longer work experience (median value 9 (Ger-
man) vs. 11.5 (non-German)). Furthermore, the German sample contained more software
developers (54% vs. 50%) and less software architects (17% vs. 27%) than the non-German
one, which may be ascribed to the channels we used to recruit participants in both regions.

Construct Validity of Online Survey Questionnaire In our field study, we explicitly asked
about the usual frequency of sketching. In hindsight, we found that this question ignored
that the sketching frequency most likely varies with different software development phases
and it may thus be difficult for the participants to give such a general estimate. To reduce
biases like social desirability and frequency illusion in our survey, we decided not to ask
participants about their typical sketching behavior, e.g., how often they sketch or whether
they use UML notation, but instead asked them about a concrete artifact, namely their last
sketch. However, a threat to construct validity may be the way we tried to capture the con-
text in which the sketch was created. Beside asking for the team size and application area
of the project, we asked whether the project team “employs model-driven software engi-
neering”. This question may be too vague, as participants may have a differing notion of
what model-driven software engineering is. In hindsight, we may have better asked for more
concrete tools or practices, e.g. which programming languages are used. Furthermore, the
perception of what exactly “UML elements” are may differ between respondents and there
exist other modeling languages such as the Business Process Model and Notation (BPMN). For
most questions, we asked the participants to think of the last sketch or diagram they created.
Depending on how long the period of time between creation and filling out the question-
naire was, a recall bias [266] may affect the answers. As 85% of our participants created their
last sketch not longer than one month ago, this bias is unlikely to influence our results. Since
our sketch dimensions are based on past studies and our preliminary research, we assume
that it is unlikely that we missed an important confounding variable. However, we cannot
rule out the possibility that the sketch our participants were referring to actually consisted
of multiple sketches (e.g., on one sheet of paper).

External Validity of Observational Study Results By inviting participants with diverse
backgrounds (research assistants and graduate students with and without industry experi-
ence as well as professional software developers) and choosing four real-world performance
bugs from widely used open source projects, we tried to limit threats to the external validity
of our study. However, the focus on performance bugs in collection libraries and the limited
size of our subject sample limit the generalizability of our findings. To counter participants’
low experience with profiling tools, we conducted a detailed introduction into our sampling
approach and let them experiment with our tool before giving them the first performance
bug. The fact that some participants had low experience with the IntelliJ IDEA IDE may also
affect the validity of our study. We tried to mitigate this threat by concentrating on the third
bug where we assumed that the developers had time enough to gather experience with the
IDE. The same applies for the collection libraries in which our participants had to fix the
performance bugs.

34 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

Internal Validity of Observational Study Results Since our study sessions took quite
long, the internal validity may be affected by fatigue effects, especially in case of the last bug.
Another threat to internal validity may be the support by one of the authors during the study.
To mitigate this threat, we only gave the participants hints when they got stuck. Furthermore,
the hints had been prepared before conducting the study and were given in the same order
to every team. The fact that most teams did not work together before our study could also
affect the results. Thus, we concentrated on the third bug for our analysis, when the team
members had at least some time to get used to each other and the environment. One threat
to validity, and at the same time an interesting direction for future work, is the analysis of
non-verbal communication during pair programming, which we did not consider.

2.6 Related Work

Over the past years, studies have shown the importance of sketches and diagrams in software
development. However, sketching is also an important task in other domains.

Sketches in General Artists sketch to clarify existing ideas and to develop new ones [141].
In mechanical design, sketches not only document final designs, but also provide design-
ers with a memory extension to help ideas taking shape and to communicate concepts to
colleagues [342]. Beside sketches being an external representation of memory and a means
for communication [339, 340], they serve as documentation [285]. Schuetze et al. showed
that the possibility to sketch has a positive effect on the quality of solutions in early stages
of the design process [285]. Furthermore, the ambiguity in sketches is a source of creativ-
ity [157, 325, 341] and they support problem-solving and understanding [325]. In our survey,
we found that the latter was one of the main reasons why participants archived their sketch
(see Section 2.3.3).

Sketches in Software Engineering Software designers not only use sketches to design
the appearance, but also the behavior of software [246]. A study by Brown et al. [70] re-
vealed the importance of sketches for collaboration between user interaction designers and
software developers. Chung et al.. [90] showed that diagramming in distributed environ-
ments like open-source projects differs from diagramming in co-located settings. Sketching
helps to share insights and coordinate design models during software design reasoning [254].
Dekel and Herbsleb [109] studied software design teams at the OOPSLA DesignFest, observ-
ing that teams intentionally improvise representations to fulfill ad-hoc needs, which arise
during the evolution of object-oriented design, and thus diverge from standard-notations
like UML. We can support this with our survey, since most sketches were informal, but of-
ten contained at least some UML elements. Walny et al. [354] analyzed eight workflows
of software developers in an academic setting. They report on a variety of transitions that
sketches and diagrams undergo. Our quantitative as well as qualitative results provided in-
sights into how such transitions happen in software development practice. More than half
of the sketches were revised. Furthermore, respondents reported on sketches being shared
with others or redrawn digitally. In another study, Walny et al. [353] analyzed 82 whiteboard
drawings in a research institution to achieve a better understanding of what they called spon-
taneous visualizations. Our study suggests that one reason for archiving a sketch is that it

2.6 Related Work 35

helps to visualize the implementation, issues, or processes. LaToza et al. [204] conducted
a survey with 280 software engineers at Microsoft. They found that paper and whiteboards
were perceived as most effective for designing. Furthermore, they state that understanding
the rationale behind code is the biggest problem for developers. In our study, over half of
the sketches helped the respondents to understand related source code. Cherubini et al. [84]
interviewed eight software developers at Microsoft, identifying nine scenarios in which de-
velopers created and used drawings. They explored these scenarios using a survey with 427
participants, also recruited at Microsoft. We based our list of purposes for sketch creation on
their scenarios (see Table 2.3) and found similar results. However, we asked for further pur-
poses and found analyzing requirements to be an important task. Cherubini et al. state that
the use of formal notations like UML was very low. This is consistent with Petre [255], who
reports on a series of semi-structured interviews with 50 professional software developers
on their UML use. She states that the majority of interviewed practitioners did not use UML
and those using UML tended to use it informally and selectively. Our study confirms the
informal use of UML, but we found that 57% of the sketches contained at least some UML
elements.

Performance Debugging and Pair Programming As mentioned earlier, we are not aware
of any previous study investigating in particular how developers locate performance bugs.
However, studies have been performed that generally address change tasks, program com-
prehension, feature location, and code navigation. Jin et al. [184] conducted a study of 109
real-world performance bugs to extract certain characteristics. Based on their findings, they
implemented a rule-based performance bug detection and found many previously unknown
performance problems in several open source projects. Nistor et al. [249] used the bugs that
Jin et al. collected to identify how these bugs depend on loops and implemented an auto-
mated oracle for performance bugs. Using this oracle, they found 42 new performance bugs
in 9 open source Java projects. We used three of those bugs in our study. Roehm et al. [272]
conducted an observational study with 28 professional software developers. They found
that developers prefer face-to-face communication over documentation, which supports
our choice to conduct the study in a pair programming setting. Furthermore, the bug lo-
cating phase of our study models the problem-solution-test work pattern they described: for
bug fixing tasks, developers first identify the problem, then search for and apply a solution,
and finally test the correctness of the solution. Similar to Sillito et al. [293] and Ko et al. [198],
Roehm et al. found that while developers comprehend software, they ask and answer ques-
tions and test hypotheses about application behavior. We can partially confirm this for our
setting (see Section 2.4.3). Most existing studies found no significant influence of developers’
personality on pair programming effectiveness [279]. However, developers’ expertise can af-
fect pair programming sessions: Chong and Hurlbutt [87] conducted an ethnography study
of professional pair programmers from two software development teams. They found that
in teams with different levels of expertise for driver and navigator, the less knowledgeable
developer had a tendency to become more passive, letting the expert dominate the interac-
tion (see also Chapter 4 on expertise development). We also observed this behavior in two
of six teams. Zieris and Prechelt state that “pair programming requires skill beyond software
development skill” [376]. In our study, we did not find a clear connection between prior work
experience and success in locating and fixing a performance bug.

36 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

2.7 Discussion

Our exploratory study (Section 2.2.1) and online survey (Section 2.3) have shown that creating
sketches and using sketches created by others are common tasks among software practition-
ers. Most sketches were revised multiple times and had an estimated lifespan of more than
one week. This is backed up by qualitative data from the survey, as respondents reported that
sketches were often revised or redrawn, especially when used for documentation. This data
also indicates that it is common that the lifecycle of a sketch starts on analog media like pa-
per or whiteboards and eventually ends as an archived digital version. More than two thirds
of the sketches were created in less than one hour, mostly using analog media like paper or
whiteboards. This may be a reason for many sketches being rated as informal. Interactive
whiteboards and tablets were almost never used, but this may have changed since we con-
ducted our online survey in 2013. The use of UML elements was higher than we expected
after the field study, just like the lifespan. Another unexpected result was that most sketches
were archived. Besides being archived, many sketches were rated as helpful to understand
the related source code artifacts in the future. In the open-ended answers, many respon-
dents stated that their sketch helped them to understand issues or implementation details.
Thus, despite the difficulty of keeping them up to date, sketches are a valuable resource for
developers.

With our online survey (Section 2.3), we could also validate insights from the interviews
we made during our exploratory research (Section 2.2.1): One interviewed developer noted
that in his team, whiteboards are normally used as soon as more than two persons are in-
volved. Otherwise, the preferred medium is paper. We found out that paper was the preva-
lent medium for one or two contributors and that whiteboard usage doubled when more
than two persons contributed. Furthermore, we observed that while half of the sketches were
created by a single person, the other half was almost entirely created by two or three persons;
only few sketches were created by more than three persons. Our preliminary assumption
that sketches and diagrams primarily relate to classes and methods—or other source code
artifacts with the same level of abstraction—was partly confirmed, but projects and packages
were also important.

Our observational study (Section 2.4) has shown that the communication strategies dif-
fered between the pair programming teams. Reasons for this can be the different expertise
levels of the teams, but also their composition. Most teams formulated a hypothesis for
the cause of the performance bug relatively early, that is the first half of the session. They
discussed the architecture and algorithms related to the performance bug while working
together on their hypothesis. However, in two teams a dominant team member lead the
interaction. Although imposed by the study procedure, sketching was considered mostly
positive as an aid for explaining a performance bug. The natural use of sketching performed
by the navigator in four teams during the location process suggests that it is an appropri-
ate tool for pair programming scenarios. It becomes less clear, however, whether sketching
would also be a useful externalization for a single developer when trying to solve a com-
plex performance bug. Five out of six teams consider sketches to be a suitable means for
documentation, but only if they are polished enough (Table 2.10, Proposition 3.2). Our sur-
vey has shown that developers invest time to re-create sketches and that a main reason for
archiving them is documentation. Answers from interviews with participants of the observa-
tional study also indicate that context is important to understand sketches later (Table 2.10,

2.8 Conclusion: Empirical Results 37

Proposition 3.1), but participants also mentioned a common sketch vocabulary to address
this issue (Table 2.10, Proposition 3.4).

2.8 Conclusion: Empirical Results

The main contribution of our study on sketches and diagrams in practice is a thorough de-
scription of the manifold dimensions of sketches and diagrams in software development by
presenting quantitative as well as qualitative results from an online survey with 394 partici-
pants. This survey revealed that sketches and diagrams, even if they are often informal, are
a valuable resource, documenting many aspects of the software development workflow. We
showed that sketches are related to different source code artifacts and that roughly half of the
sketches were rated as either helpful for the respondents or others to understand these ar-
tifacts. Furthermore, the qualitative data showed that sketches often document or visualize
the implementation and support people in understanding it. As documentation is frequently
poorly written and out of date [143, 208], sketches could fill in this gap and serve as a supple-
ment to conventional documentation like source code comments. Tool support is needed
to assist developers in archiving and retrieving sketches related to certain source code ar-
tifacts (see Section 2.9). Since more than half of the sketches analyzed in our survey were
archived either digitally or digitally and on paper, software professionals are willing to keep
these visual artifacts. However, they also named technical issues, e.g., that there is no good
technique to keep sketches together with source code. In response to this observation, we
developed the tool prototype SketchLink, which allows to access related sketches within the
IDE (see Section 2.9.2). Qualitative data indicates that it is a common use case for sketches
to be initially created on analog media like paper or whiteboards and then, potentially after
some revisions, they end up as an archived digital sketch. To support such lifecycles, we de-
veloped the tool prototype LivelySketches, which supports transitions from analog to digital
media (see Section 2.9.3). Our observational study has shown diverse communication pat-
terns in for different pair programming teams while locating and fixing performance bugs.
Sketches were an appropriate medium to explain performance bugs, and in particular to
describe complex problems. Further investigating communication patterns and the role of
sketching in pair programming are a promising directions for future work.

2.9 Tool Support

As motivated above, sketches and diagrams play an important role in the daily work of soft-
ware developers. Most of them do not follow formal conventions like the Unified Modeling
Language (UML), but have an informal, ad-hoc nature [28, 84, 109, 163, 255]. They may con-
tain different views, levels of abstraction, formal and informal notations, pictures, or gener-
ated parts [84, 109, 345, 353]. Developers create sketches mainly to understand, to design,
and to communicate [28, 84]. Media used for sketch creation include not only whiteboards
and scrap paper, but also software tools like Photoshop and PowerPoint [84, 163, 246, 354].
Understanding source code is one of the most important problems developers face on a daily
basis [84, 197, 204, 295]. However, this task is often complicated by documentation that is fre-
quently poorly written and out of date. Sketches and diagrams, whether formal or informal,
can complement conventional documentation resources such as source code comments,

38 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

but better tool support is needed for archiving and retrieving those visual artifacts. There-
fore, we developed two novel tool prototypes. SketchLink is a prototype tool to assist devel-
opers in archiving and retrieving sketches and diagrams related to certain source code arti-
facts. Since digital sketches can more easily be edited, copied, organized, and shared [364],
sketches often pass through transitions from analog to digital media [354]. But even if a
digital version exists, analog sketches may be kept as a memory aid [353]. Thus, we devel-
oped a second tool prototype named LivelySketches to support such “round-trip” lifecycles
of sketches from analog to digital and back.

2.9.1 Existing Tools

In the past, many tools have been proposed that aim at supporting developers’ sketching ac-
tivities. Some of them force users to employ special devices like electronic whiteboards [83,
108, 217] or digital pens and paper [63, 106]. These tools often focus on UML as they try to
convert sketches into formal UML diagrams [83, 106, 108, 174]. Branham et al. proposed a
tool to automatically capture whiteboard drawings using a networked camera [65]. This ap-
proach leads to a large number of archived sketches, which are not likely to be used in the
future. Again, special hardware is needed for capturing the drawings. Furthermore, tools
exist that allow to create sketches directly in the source code editor of IDEs [63, 174]. This
approach is also of limited use, because, on the one hand, sketching may happen in design
meetings with other stakeholders where IDEs are not used and source code is not imme-
diately created. On the other hand, sketches and diagrams may provide a high-level un-
derstanding of the project architecture [206] and may thus be linked to different artifacts in
different source code files. These use cases are difficult to support if sketches are created di-
rectly in the source code editor and are attached to a single source code file. In our opinion,
existing tools do not adequately consider developers’ needs. In her study on UML in prac-
tice, Petre observed that software developers “will not adopt tools and ideologies at odds
with their considered practice” [255]. Walny et al. note that a tool integrating sketches into
the software development workflow must support a broad range of work styles [354], which
most of the above mentioned tools do not achieve.

2.9.2 SketchLink: Linking Sketches to Source Code Artifacts

With the results from our empirical research on sketches and diagrams in mind, our main
goal was to create a tool that would enable developers to easily capture and annotate the
sketches and diagrams they create to link them afterwards to the related source code arti-
facts. The sketches could then be used to understand the related code and to navigate to
the linked artifacts, enabling developers to explore relations depicted in the linked sketches.
The tool should integrate with heterogenous workflows and should not be restricted to a
certain visual convention or a special medium for creating sketches. Finding relevant docu-
mentation in external systems is a task that developers generally regard as challenging, time
consuming, and not always worth its effort, because even an elaborate search does not guar-
antee to produce helpful content [204, 208]. Thus, the links should be visualized in-situ in
the source code editor, for example using color coding, highlighting, or graphical icons, but
should not distract the developer. This allows developers to quickly access relevant sketches.
In order to provide flexible means for capturing analog drawings, we decided to focus on mo-

2.9 Tool Support 39

(a) Whiteboard sketching. (b) Selecting and linking areas.

Figure 2.10 – Exemplary usage of SketchLink for whiteboard sketching.

Figure 2.11 – SketchLink architecture.

bile devices like smartphones and tablets for capturing, annotating, and linking sketches.
Since such devices are prevalent nowadays, they are available in almost every situation (see
Figure 2.10 for an exemplary workflow). However, it should also be possible to upload, for
instance, computer-generated diagrams from conventional desktop computers.

Prototype Implementation

Our prototype implementation consists of a server, a web application, and an IDE plugin
(see Figure 2.11). The server stores the sketch images, metadata, and the links, providing
a WebSocket interface for updating and retrieving this information. The web application
runs in both desktop and mobile browsers and can be used to upload, annotate, and link
sketches. It requests information about available source code artifacts from the server, which
has access to the version control system. The IDE plugin, which we implemented for the Java
IDE IntelliJ IDEA, visualizes the links in the editor and can be used to create link anchors in
the source code. Furthermore, the plugin enables the web application to scroll the editor
view to a linked source code artifact to navigate through source code using a linked sketch
or diagram. A demo video of the tool can be found on Youtube5 and in the supplementary
material [37].

Link Anchors: SketchLink uses a generic approach for linking sketches and diagrams to
source code artifacts by employing universal link anchors. Every artifact that can be linked
to other artifacts is identified by a Universally Unique Identifier (UUID), to which a one-

5https://www.youtube.com/watch?v=3IuLKZx7Wbs

https://www.youtube.com/watch?v=3IuLKZx7Wbs

40 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

Figure 2.12 – SketchLink: Source code navigation using tablet.

digit type identifier is prepended. SketchLink currently supports three types of link anchors:
source code anchors, sketch anchors, and marker anchors.

Source Code Anchors: Source code anchors are either created by the server when the user
links a sketch to a certain source code artifact using the web application or by the IDE plugin.
Our prototype currently only supports Java and embeds link anchors in Javadoc comments.
This has the advantage that links to the sketches on the server can be automatically inserted
into the HTML documentation generated from Javadocs comments (at least for classes and
methods). If other statements or expressions are located in the same source code line as
the comment, the anchor referes to this line. Otherwise, the anchor refers to the subse-
quent element (e.g., a class or method decalaration). Our approach is not limited to Java or
Javadoc, because it only depends on the ability to insert an identifier in a source code com-
ment, which is possible in every other programming language. An exemplary source code
anchor inside a Javadoc comment can be found below (see also Figure 2.16):

/**
This is a comment.
@sketchlink c-68aff333-5945-4ddf-8558-d0aeab3f164e

*/

Sketch and Marker Anchors: The container format for sketch and marker anchors is SVG.
The sketch images are loaded using an SVG image element. Users can link parts of a sketch
to source code artifacts with rectangular markers (see Figure 2.10b), which are stored as
rect elements in the SVG. The link anchors for a whole sketch or single markers are stored
in theid attribute either of the SVG root element (sketch anchors) or of an rectangle element
(marker anchors). Below we provide an example outlining the general structure of the SVG
files that SketchLink creates:

<svg id="s-b6787af4-..." ... >
<image xlink:href="/sketches/..."/ ... />
<g>

<rect id="m-89525190-..." ... />
...

</g>
</svg>

Web Application: Using SketchLink on mobile devices like smartphones or tablets enables
users to take pictures, for instance of a whiteboard sketch, directly from the application run-
ning in a web browser, and upload it to the server (see Figure 2.10). When used in a desktop
browser, the tool offers a file dialog for uploading image files like scanned sketches or digi-
tally created diagrams. After uploading the image file, users may add additional information
like the authors of the sketch or a short description of the visual artifact (see Figure 2.13).

2.9 Tool Support 41

Figure 2.13 – SketchLink web application running on iOS 7: Metainfo view.

This information is sent to the server, along with the image file of the sketch. After the sketch
is uploaded, the user can either link the entire sketch, or parts of it using a rectangular se-
lection, to a source code artifact (see Figures 2.14 and 2.15). Furthermore, the user may
annotate the selected areas with a text comment. With support of our IDE plugin, the user
can navigate to linked source code artifacts using the web application, either running on the
same computer like the IDE or, for instance, a mobile device (see Figures 2.12 and 2.14).

IDE Plugin: When the plugin is started, it folds each UUID in the @sketchlink tags in
Javadoc comments and hides them behind an icon (see Figures 2.16 and 2.17). If no other
tags or comment text is present, Javadoc comments found inside a method are completely
hidden. The plugin was not only developed with the goal to explicitly visualize source code
anchors, but to do this without distracting the developer during coding phases. Therefore,
the icon considers the current color scheme and automatically hides if its enclosing Javadoc
comment gets folded. Moreover, the icons—and the corresponding Javadoc tags—can be
hidden globally. When the user positions the mouse cursor over an icon, the linked source
code is highlighted. If the user clicks on an icon, a list with linked artifacts is shown (see
Figure 2.16). By positioning the mouse cursor over a list element, the user can open a preview
of the linked sketch or marker (floating mode). Above the image, the authors of the sketch
and its annotation are displayed (if this information is available on the server). If markers
are present and the user places the mouse cursor over one of them, the annotation for this
marker is displayed instead of the annotation for the whole sketch and the linked source
code is highlighted. By left-clicking on a marker or a sketch, the user can navigate to the
linked source code artifacts directly from within the preview window. A right-click opens the
configured web browser and loads the sketch in the SketchLink web application. This way,
the user may edit the annotation or create and link new markers. The user can also switch

42 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

Figure 2.14 – SketchLink web application running on iOS 7: Linked class (button ‘Follow Link’ can be
used to navigate to the artifact within the IDE).

Figure 2.15 – SketchLink web application running on iOS 7: Link view (packages on the left, classes
and methods on the right).

2.9 Tool Support 43

Figure 2.16 – SketchLink plugin for IntelliJ IDEA: Floating mode.

Figure 2.17 – SketchLink plugin for IntelliJ IDEA: Docked mode.

44 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

to the docked mode of the plugin, where a list of the linked sketches is displayed right next
to the source code (see Figure 2.17). Furthermore, the plugin assists the user in creating new
source code anchors. After a new anchor is created, the plugin prompts the user to open the
web application in order to directly link the newly created anchor to a sketch or marker. For
each source code anchor, metadata like the modification timestamp, the project name, the
type of the linked artifact (e.g., class, method, if-statement), and the path to the source code
file (relative to the project root) are stored on the server.

Formative User Study

A formative user study is a study conducted “during the development of a product [...] to
mould or improve the product” [334]. During the implementation of our first prototype of
the SketchLink web application, we conducted such a formative user study to evaluate ex-
isting and motivate future features. Furthermore, we wanted to create a first set of linked
sketches for later studies and for testing purposes. For the first study session, we selected
22 sketches from a student’s notepad for linking them to the source code he created for his
diploma thesis project. The student kept these sketches, which had been created in weekly
meetings with his advisor, to use them during implementation. This session was recorded
using a screen recording software and a microphone. Furthermore, we logged certain user
activities. In a second session, the two participants discussed design decisions on a white-
board and captured them afterwards using SketchLink on an iPad. Beside finding bugs and
hints for minor improvements, we observed interesting usage patterns. In some sketches,
the participants utilized rectangles to annotate parts of the sketch without linking these areas
to software artifacts. This lead to the idea to differentiate between markers used to link areas
in a sketch (LinkView) and markers only used to annotate parts of a sketch (MetaView) in our
second prototype LivelySketches. Another missing feature was the ability to link sketches to
other sketches. One scenario where this feature would have been useful was a new sketch re-
placing an old one. This motivated the version control and linking features in LivelySketches
(see Section 2.9.3).

We also conducted a user study to evaluate the SketchLink IntelliJ plugin. To this end, we
invited four software developers to use the plugin together with the web application. Par-
ticipant 1 was a computer science student working part-time as a software developer, par-
ticipant 2 had more then ten years of work experience developing embedded systems, and
participants 3 and 4 both worked in the same company developing web stores. We hosted
individual study sessions with each developer, in which they worked on different tasks using
the plugin and the web application and were asked to provide feedback using a question-
naire. The tasks included working with already linked sketches and linking new sketches
created during the study sessions. The task list, questionnaire, and screen recordings of
all study sessions are available as supplementary material [37]. Our study sessions yielded
many ideas for improvements, some of which we incorporated in the LivelySketches proto-
type. Participant 4, for example, requested the possibility to add audio annotations, which
we implemented in LivelySketches. In particular, the participant stated that “a sketch with-
out the verbal explanation during its creation is not very useful”. Other ideas included a view
that allows to display multiple sketches at once, automatically highlighting the link anchors
in sketches while navigating to the linked source code, and linking a set of statements instead
of whole methods or individual lines.

2.9 Tool Support 45

Figure 2.18 – Our conceptual workflow of round-trip sketching from analog to digital and back.

2.9.3 LivelySketches: Supporting Round-trip Sketching

Despite the widespread usage of sketches in many domains, to the best of our knowledge
there is currently no tool that explicitly supports the complete analog and digital lifecycle
of sketches. Popular tools like EverNote and OneNote focus on a paperless workflow, that
is archiving analog documents, not on integrating digital versions into the analog-focused
workflow that many users follow [28, 354]. Other proposed tools rely on special hardware
like digital pens and compatible paper for creating analog sketches [172, 210, 211, 356], need
a special scanning device to access digital versions [250], or treat analog documents only
as passive link anchors for digital resources [56]. From our research on sketches and dia-
grams in practice, the formative user study with our SketchLink prototype, and related work,
we derived four main requirements that a tool supporting the analog and digital lifecycle of
sketches should implement: (1) it should be possible to archive analog sketches along with
context information needed for their understanding, (2) the tool should provide a version
control for evolving sketches, (3) since sketches are usually connected and embedded in a
work context, it should be possible to link them to other sketches or related artifacts, and
(4) the tool should support the “round-trip” of sketches from analog to digital and back. In
the following, we further elaborate on the conceptual design, present a prototype implemen-
tation of this concept named LivelySketches, and report findings from a formative user study
with the prototype.

Conceptual Design

As motivated above, sketches often start on analog media like paper or whiteboards and later
get digitized to share and revise them [28, 84, 354]. However, sketches do not only evolve dig-
itally, but may be printed out or redrawn on paper or whiteboards. We denote this process
involving transitions from analog to digital sketching and vice versa as round-trip sketch-
ing. In this section, we describe an exemplary scenario and a conceptual workflow to derive
requirements for a tool providing support for round-trip sketching.

46 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

In our scenario, a software development team discusses possible extensions of an app.
They collect emerging ideas in a shared whiteboard sketch. Furthermore, some developers
write down their own thoughts in personal notebooks. At some point, the whiteboard be-
comes too cluttered and the team leader decides to clean the whiteboard partially. After the
meeting, one developer is asked to create a polished version of the whiteboard sketch for the
customer. This sketch is also posted in an internal development wiki. A week later, the team
uses a printout of the polished sketch together with the developers’ notes to continue where
they left off.

In this scenario, several issues arise: When the whiteboard is cleaned, it is not possible
to go back to erased content that may still be relevant to understand the evolution of the
sketch. Further, the developers’ notes are related to the shared sketch, but the connection
is only present in their mind. To be able to refine the whiteboard sketch, the developer may
need contextual information that has not been captured during the meeting. If the sketch is
shared with others (e.g., in a wiki), parallel versions of the sketch may evolve that are later
merged during the next meeting. This evolution of the sketch can either happen on analog
or digital media. A tool supporting round-trip sketching should addresses these issues by
providing means to capture context, manage revisions, and link sketches to related sketches
or other artifacts. It should then be possible to access this information using digital as well
as augmented analog versions of a sketch.

Figure 2.18 visualizes the conceptual workflow for round-trip sketching including differ-
ent transitions from analog to digital media and back: The lifecycle starts with the creation
of an analog sketch (1). The user decides that the sketch is worth capturing and adds a gen-
erated QR code label to the sketch (2) to be able to identify this version later. Then, he or she
uses a tablet to capture the sketch (3). At that point, it is possible to add metadata like au-
thors, textual annotations, or even short videos explaining the content of the sketch (4). After
the sketch is digitized, users may add content using tools like Gimp, Visio, or Photoshop, or
utilize the sketch to redraw a revised digital version. The tool should allow users to easily
add these new revisions to the captured sketch. Generally, if analog and digital versions of
a sketch evolve concurrently, version control should help to keep track of their relation and
should assist in merging versions existing in the analog as well as in the digital world. Users
may also link the whole sketch or parts of it to other related sketches or documents to embed
the artifact in the work context (5). To return from digital to analog, the user can print the
revised sketch, for instance to bring it to a meeting (6). Using the QR code on the printed or
the initial sketch, the user can access all revisions of the sketch as well as linked artifacts and
captured metadata (7). To close the circle, users may add content to the printed sketch (8)
and capture this new revision with a tablet to access, refine, or share it later (9).

For a first prototype implementation supporting the workflow described above, we formu-
lated six requirements:

REQ1 (Identify): The tool should allow users to unambiguously identify analog and
digital sketches.

REQ2 (Capture): The tool should enable users to capture analog sketches along with
context information.

REQ3 (Version): The tool should enable users to add both analog and digital revisions
to a captured sketch.

2.9 Tool Support 47

(a) MetaView: Show or add metadata, manage
sketch versions.

(b) LinkView: Manage links to other sketches.

Figure 2.19 – Two views of the LivelySketches prototype.

REQ4 (Link): The tool should allow users to link captured sketches to related sketches
and other artifacts.

REQ5 (Print): The tool should allow users to print captured and digitally revised
sketches.

REQ6 (Augment): The tool should allow showing captured metadata and linked artifacts
of identified sketches.

These requirements cover the main requirements mentioned in the introduction, which
we derived from related work and our own research on sketches and diagrams in software
development (1 → REQ2+6, 2 → REQ3, 3 → REQ4, 4 → REQ1+5).

Prototype Implementation

To be able to evaluate the conceptual workflow, we created a prototype that implements the
above requirements. It uses a simple client-server architecture (see Figure 2.20). The client
is web-based and runs on both desktop and mobile browsers. We optimized the GUI to be
used on touch devices and tested it on an Apple iPad. The server is responsible for storing
and managing the versioned sketches and for creating and decoding the QR codes used to
identify sketches. It provides a REST API that the client uses to upload and retrieve data. The
web client of LivelySketches provides three main views: One view to open captured sketches
and to add new ones (OverView), one view to add and view metadata and to manage the
revisions of a sketch (MetaView), and one view to link a captured sketch or parts of it to other
sketches (LinkView). The latter two views are depicted in Figure 2.19. In the following, we
describe how the prototype implements the above requirements.

REQ1 (Identify) Every sketch is identified by a Universally Unique Identifier (UUID). This
identifier is either assigned to a sketch when it is uploaded to the server or by sticking a
prepared QR code label to it. LivelySketches allows to create lists with QR codes that encode
predefined UUIDs. These lists can then be printed to adhesive labels. The labels are very
small and thus do not distract from the main content of the sketch (see Figure 2.21 for an

48 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

Figure 2.20 – Architecture of LivelySketches.

example from the formative study). One sheet contains 13 rows with different UUID and
10 identical labels in each row. This enables the user to mark different revisions of the same
sketch drawn on different sheets of paper with the same label. LivelySketches then recognizes
the identical codes and adds later uploaded sketches as revisions of the first one. The tool
also allows the user to generate labels for already captured sketches to mark new analog
revisions of them. Further, QR codes can be digitally added to a sketch after uploading it.
However, we recommend to always use labels to mark analog sketches to be able to reference
the analog artifact later.

REQ2 (Capture) Using the main view of the app, the user can open already captured sketches
or upload new sketches. He or she can either upload a JPEG or PNG file or use the tablet’s
camera to take a picture of an analog sketch. The tool then allows the user to add different
meta information like title, author names, or date. After the sketch is uploaded, the MetaView
(see Figure 2.19a) provides the functionality to add textual annotations, audio, or video files
to the sketch. Again, existing files can be uploaded or the tablet camera can be used to record
these annotations.

REQ3 (Version) As mentioned above, sketches are often revised and redrawn. To keep
track of the history of a sketch, the prototype enables the user to add new revisions that were
created either on analog or digital media. LivelySketches follows a state-based extensional
versioning approach [97] that establishes a simple linear successor relationship between the
revisions of a sketch. The sequential order of the revisions is shown in the lower part of the
MetaView. When adding a new revision, the tool asks for a commit message describing the
modifications that took place between the two revisions. Further, the tool assists the user in
transferring metadata from a previous version.

REQ4 (Link) To link sketches, the prototype provides a dedicated view (see Figure 2.19b).
A link always connects whole sketches or parts of sketches that are identified using a link
anchor. Currently, LivelySketches only allows to use rectangular link anchors. However, since
we use SVG, extending this other shapes or a free-form selection to allow for a more fine-
grained selection is possible.

2.9 Tool Support 49

Figure 2.21 – Sketch with QR code created during LivelySketches formative user study.

REQ5 (Print) In the MetaView, sketches can be either printed directly or the image files
may be downloaded. Furthermore, this view allows the user to print a list of QR code labels
that may be used to identify new analog revisions of the sketch.

REQ6 (Augment) Using the corresponding button in the header of LivelySketches, it is pos-
sible to scan the QR code of an analog sketch. The system then decodes the UUID of the
sketch, opens the MetaView and automatically switches to the most recent revision. The
user can then browse to the history of the scanned sketch, access or add metadata, or navi-
gate to linked sketches.

Formative User Study

To get early feedback for improving the prototype, we conducted a formative user study with
four participants. All participants were computer science graduate students. During the
study, they worked in teams of two to design a graphical user interface for a dice game. After
a short introduction to the LivelySketches prototype, we provided them the rules of the game
they were going to design, paper and pencils for drawing sketches, an Apple iPad running
the prototype, and a prepared sheet with QR code labels. Then, we gave them a task descrip-
tion for the study, namely to design a GUI and a storyboard for the game at hand. During
the study, we captured audio and video data. We recorded both the sketching activity on
the desk with a camcorder as well as the interaction with the tool using a screen capturing
software. We provide all sketches created during the study as well as the screen captures
as supplementary material [42]. After the study, the participants filled in a system usability

50 2 Sketching: Developers’ Usage of Sketches and Diagrams in Practice

scale (SUS) questionnaire which we used as a “quick and dirty” way of accessing the tool’s
usability [68].

Participants’ comments and a SUS score of 81.3 indicate that they were very satisfied with
the performance and stability of the tool. Since we conducted the study to improve the tool,
we will focus on possible improvements and feature requests in the following: Because it is
tedious to enter the author names each time a sketch is captured, participants requested a
user management that would allow them to automatically add their own username or user-
names of other registered authors. Currently, all sketches are managed globally, which was
not a problem during this short study, but for “real-world” usage, participants proposed to
add a feature allowing to assign sketches to certain projects. Regarding the link anchors, par-
ticipants requested other shapes and free-form anchors to be more flexible in linking parts
of sketches. Further, they wanted to be able to automatically center the view around a se-
lected anchor and then zoom into the linked part of the sketch. This would be particularly
useful when capturing large sketches, for example from whiteboards. Regarding the linked
sketches, participants proposed a global view visualizing all sketches and all links between
them. In this view, it would then be possible to zoom in and out and to navigate through
this structure by following the links. This feedback, together with results from a future field
study, can be used to bring LivelySketches even closer to the needs of software developers in
practice.

2.10 Conclusion: Tool Support

SketchLink enables developers to easily capture, annotate, and link their sketches and dia-
grams to the related source code artifacts of Java projects using a web application and an IDE
plugin. The web application can also be used to navigate through a software project using
created links. Furthermore, our IDE plugin visualizes the links in-situ in the source code ed-
itor and assists developers in creating new link anchors. We also presented the conceptual
design of round-trip sketching as well as a prototype implementation named LivelySketches
that supports the lifecycle of sketches from analog to digital media and back. It enables users
to manually capture and link both analog and digital sketches as well as relevant context in-
formation. The captured sketches can then be organized in a common version history.

For both tools, the evolution of sketches and diagrams is an important aspect. Lively-
Sketches implements a simple linear versioning, which may not suit all real-world workflows.
Moreover, the evolution of a sketch from paper to a digitally revised version (and back) is not
the only possible workflow. Walny et al. [354] present an overview of other possible lifecycles
of software development sketches. The proposed approach works best with paper sketches,
but it is also possible to capture sketches on whiteboards using a tablet camera. In this sce-
nario, the original sketch is lost when the whiteboard is erased, but the lifecycle can continue
with the digitally captured version or with a printout.

SketchLink does not yet support the evolution of sketches or linked artifacts. Since the de-
tection of moved or renamed source code artifacts between two revisions in the version con-
trol system is generally not an easy task [360], a future version of the plugin should consider
common refactorings in order to keep the data on the server up to date. Other directions for
future work include proposing new links to the user by analyzing existing links and refining
the search function for captured sketches using captured metadata. There is some overlap in
the functionality of both tools. LivelySketches can be used to capture storyboards for graph-

2.10 Conclusion: Tool Support 51

ical user interfaces, to connect visualizations of dynamic and static aspects of software (e.g.
UML class and sequence diagrams), and to connect sketches and visualizations of different
components of a software architecture. SketchLink can then be used to link those sketches
to the corresponding source code artifacts. However, the application area of LivelySketches is
not limited to software development—the approach can be adapted to any discipline where
sketching plays an important role. Still, before the tools are ready to be used in practice, they
must be evaluated in a larger context to see how well they integrate into real-world settings.

3 Chapter 3

Code Plagiarism: Stack Overflow
Code Snippets in GitHub Projects

“Immature poets imitate; mature poets steal; bad poets deface what they take,
and good poets make it into something better, or at least something different.”

—T. S. Eliot, The Sacred Wood: Essays On Poetry and Criticism (1920)

Stack Overflow is the most popular question-and-answer website for software developers,
providing a large amount of copyable code snippets. Using those snippets raises mainte-
nance and legal issues. Stack Overflow’s license (CC BY-SA) requires attribution, that is ref-
erencing the original question or answer, and requires derived work to adopt a compatible
license. While there is a heated debate on Stack Overflow’s license model for code snippets
and the required attribution (see Section 3.3.3), little is known about the extent to which
snippets are copied from Stack Overflow without proper attribution. To fill the gap, we con-
ducted a large-scale empirical study analyzing software developers’ usage and attribution of
non-trivial Java code snippets from Stack Overflow answers in public GitHub projects. We
followed three different approaches to triangulate an estimate for the ratio of unattributed
usages and conducted two online surveys with software developers to complement our re-
sults. For the different sets of GitHub projects that we analyzed, the ratio of projects contain-
ing files with a reference to Stack Overflow varied between 3.3% and 11.9%. We found that at
most 1.8% of all analyzed repositories containing code from Stack Overflow used the code in
a way compatible with CC BY-SA. Moreover, we estimate that at most a quarter of the copied
code snippets from Stack Overflow are attributed as required. Of the surveyed developers,
almost one half admitted copying code from Stack Overflow without attribution and about
two thirds were not aware of the license of Stack Overflow code snippets and its implications.

The content of this chapter is based on a peer-reviewed journal publication [31]. Moreover,
some results have also been published in an extended abstract before [44].

Contributions:

• A thorough description of the legal situation around Stack Overflow code snippets.
• A triangulated estimation of the attribution ratio of Stack Overflow code snippets in

public GitHub projects.
• An analysis of possible licensing conflicts for the GitHub projects containing code from

Stack Overflow.
• A qualitative analysis of how developers refer to Stack Overflow content.
• An online survey suggesting that many developers are not aware of the licensing of

Stack Overflow code snippets and its implications.

54 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

3.1 Introduction

As of September 2018, Stack Overflow’s public data dump [315] lists over 14 million an-
swered questions and over 9 million registered users. Many answers contain code snippets
together with explanations [369]. The availability of this large amount of code snippets lead
to changes in software developers’ behavior: Nowadays, they regularly face the “build or
borrow” question [64]: Should they try to understand and solve an issue on their own or just
copy and adapt a solution from Stack Overflow (SO)? Assuming that developers also copy and
paste snippets from SO without trying to thoroughly understand them, maintenance issues
arise [281]. For instance, it may later be more difficult for developers to refactor or debug
code that they did not write themselves. Moreover, if no link to the corresponding question
or answer is added to the copied code, it is not possible to check the SO thread for a corrected
or improved solution in case problems occur.

Beside possible maintainability implications, copying and pasting code from SO may also
lead to licensing issues: All content on SO is currently licensed under the Creative Commons
Attribution-ShareAlike 3.0 Unported license (CC BY-SA 3.0) [101], which allows to share and
adapt the published content, but requires attribution and demands contributions based on
the content to be published under a compatible license (share-alike). Regarding the attri-
bution requirement, SO terms of service [312] stated—until May 2018—which information
is required when content from SO is republished. In particular, they required a link to the
original post together with the names of the authors on SO (see Section 3.10).

The share-alike requirement of CC BY-SA 3.0 requires derived work to use a compatible
license. It further requires adaptations of licensed content to add a credit identifying how
the content is used. The license defines an adaptation as “a work based upon” the licensed
content [101], which “manifests sufficient new creativity to be copyrightable” [103]. Regard-
ing the licensing of such adaptations, CC BY-SA 3.0 restricts the way authors may distribute
them, where distribution is defined as making the original work or an adaptation “available
to the public”. It is only allowed to publish adaptations under the following licenses:

1. CC BY-SA 3.0,

2. A later version of CC BY-SA 3.0 (i.e., CC BY-SA 4.0),

3. A ported version of CC BY-SA 3.0 (e.g., CC BY-SA 3.0 DE),

4. A Creative Commons compatible license.

However, Creative Commons (CC) licenses are typically not used for software [348] and
there is currently no non-CC license that is considered share-alike compatible to CC BY-SA
3.0 [102]. CC even recommends not to use CC licenses for software [103], because, “unlike
software-specific licenses, CC licenses do not contain specific terms about the distribution
of source code, which is often important to ensuring the free reuse and modifiability of soft-
ware”. They further state that “it would be difficult to integrate CC-licensed work with other
free software”.

The situation is even more complicated, because code on Stack Overflow may have been
copied from a source that has either a more permissive or a more restrictive license than
SO (dual licensing, see Section 3.12). If such an external source does not provide a license
at all, the author of the code still has the exclusive copyright and CC BY-SA 3.0 is the only
license that applies for the code [151, 298]. This situation makes the usage of code snippets

3.2 Research Design 55

from Stack Overflow problematic in terms of possible licensing conflicts (see Sections 3.3
and 3.9).

In May 2018, SO changed their terms of service, among other reasons, in response to the
new European Union General Data Protection Regulation (GDPR) [330]. With that change,
the attribution requirements mentioned above were silently removed from the terms of ser-
vice [313]. However, the requirements are still (as of July 2018) mentioned and linked in the
footer of the website, which is visible for each thread, and on the help page.1 Moreover, the
terms of service now refer to version 4.0 of the CC BY-SA license, but the data dump is still li-
censed under version 3.0 (see Section 3.9 for information about the compatibility of versions
3.0 and 4.0).

GitHub (GH) is one of the most popular code hosting platforms with more than 77 mil-
lion repositories (as of April 2018) [167]. It is not only used by developers for their personal
projects, but also by large companies such as Google, Microsoft, and Facebook. Since the
source code of public GH projects is available online, copying and pasting code from SO
posts into source code available on GH can be considered republication—the projects con-
taining non-trivial code from Stack Overflow may even be considered adaptations of the
copied code (see Section 3.3 for details on when code is copyrightable). Thus, the attribution
and the share-alike requirements defined by CC BY-SA 3.0 apply. If developers copy non-
trivial code snippets from SO into their GH projects and fail to comply with those require-
ments, the license is terminated, which means that using the code may constitute copyright
infringement [103, 304]. For closed source software projects, the attribution requirement
does not apply [103]. However, the share-alike requirement prevents using code from SO in
closed source projects, it would only be allowed if the copied code is additionally licensed
under a more permissive license.

To the best of our knowledge, there was no sufficient empirical evidence on how common
it is to copy and paste non-trivial code snippets from SO into public GH projects without the
required attribution (→ RQ1). It was also unclear how many of the projects using code from
SO have a license conflict with Stack Overflow’s license (→ RQ2). In the following, we present
the research design and results of a large-scale analysis of the usage and attribution of Java
code snippets from SO in public software projects hosted on GH. We both analyze attributed
usages and utilize three different approaches to estimate the ratio of unattributed usages.
To complement our results, we investigated if developers adhere to SO’s attribution require-
ments (→ RQ3) and conducted two surveys with software developers on their attribution
practice and their awareness regarding the licensing of code from SO posts (→ RQ4).

3.2 Research Design

The main goal of our research was to quantify the ratio of unattributed usages of code snip-
pets from Stack Overflow in GitHub projects. By usage we mean copying (and possibly
slightly adapting) a code snippet from a post on SO and pasting it into a public GH project.
The following four research questions guided our research design:

RQ1 How often is code from Stack Overflow posts used in public GitHub projects without
the required attribution?

1https://stackoverflow.com/help/licensing

https://stackoverflow.com/help/licensing

56 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

RQ2 How often does the license of repositories containing code copied from Stack Over-
flow conflict with Stack Overflow’s license?

RQ3 Do developers adhere to the attribution requirements defined in the Stack Overflow
terms of service?

RQ4 Are software developers aware of the licensing of Stack Overflow code snippets and
its implications?

We started our research with a preliminary survey to get first insights into developers’s
work practices regarding code snippets from SO (see Section 3.4). Our main research was
then divided into three phases that focused on different files on GH, different code snippets
from SO, and used different methods to triangulate an estimate for the ratio of unattributed
usages (RQ1, see Sections 3.5, 3.6, and 3.7). For all three phases, we retrieved the licenses
of the repositories containing code from SO to assess their compatibility with CC BY-SA 3.0
(RQ2, see Section 3.9). To analyze the adherence to the SO attribution requirements, we
manually analyzed a sample of Java files containing a link to an answer on SO (RQ3, see
Section 3.10). To assess the awareness of developers regarding the licensing of code from SO,
we conducted a second online survey with GH project owners (RQ4, see Section 3.11).

We used three main data sources to answer our research questions: The BigQuery GitHub
data set [161], the BigQuery GHTorrent data set [164, 166], and the BigQuery Stack Over-
flow data set [160]. Google BigQuery provides a web-based console that allows to execute
SQL queries on various public data sets, including the three data sets listed above. For
some aspects of our research, we retrieved additional information from the Stack Overflow
data dump released March 14, 2017 [309], the GHTorrent data dump released February 16,
2016 [164], the GitHub API [152], and the Stack Exchange API [308].

We decided to restrict our analyses to Java, which is one of the most popular program-
ming languages today [332]. Using the BigQuery SO data set, we retrieved the frequency of
question tags. The most common tag (as of March 2017) was javascript (1,339,747 ques-
tions), followed by java (1,223,171 questions). Moreover, we used the BigQuery GHTorrent
data set to get the most common languages of non-fork projects. Again, JavaScript was the
most common language (2,194,750 projects) followed by Java (1,788,748). According to GH’s
yearly report, Java was, considering the number of opened pull requests in 2017, the third
most popular language on GH in that year (after JavaScript and Python) [153]. We chose
Java over JavaScript, because Java has a unique file extension and is usually not embedded
in other files (like JavaScript in HTML), which makes isolating Java code in SO posts and
searching Java files on GH easier.

In our research, we distinguish between attributed and unattributed usages of SO code
snippets. Attributed usages are relatively easy to detect due to the presence of a link to the
content on SO. To detect unattributed usages, we followed three different approaches: In the
first phase (see Section 3.5), we employed regular expressions to find copies of the snippets
from the ten most frequently referenced Java answers on SO in all Java files in the BigQuery
GH data set (10 SO Java snippets, all Java files on GH). In the second phase (see Section 3.6),
we employed a code-clone detector to find clones of a sample of popular SO snippets in a
sample of popular GH projects (227 SO Java snippets, 2,313 GH Java projects). In the third
phase (see Section 3.7), we searched for exact matches of as many SO snippets in as many
GH Java files as computationally feasible with BigQuery (29,370 SO Java snippets, 1,720,587
GH Java files). Our research mainly focused on finding type-1 clones of snippets, i.e., copied

3.3 Legal Situation 57

code that only varies in whitespace, layout, or comments [275]. For such clones, we can be
relatively sure that they have actually been copied from SO, assuming that the matches are
not too short, the snippets are not too trivial, and there exists no other source.

In the following section, we briefly describe the legal situation, before we present the
methods and results for each step of our research. We use framed boxes to summarize the
results of each section and provide the raw data and all analysis scripts as supplementary
material [25].

3.3 Legal Situation

In the following, we first describe the copyright status of SO code snippets, then classify SO’s
license as a strong copyleft license, and finally point to related discussions on different sites
of the Stack Exchange network and related lawsuits.

3.3.1 Copyright Status of Stack Overflow Code Snippets

First of all, not all code snippets on SO are copyrightable. Generally, “copyright exists auto-
matically whenever someone creates a work of authorship” that is “the author’s intellectual
creation” [128]. While this definition applies for software in general, many SO code snippets
are only used to explain or demonstrate a solution, for example showing how to call a partic-
ular API. In that scenario, the code would not be creative enough to be copyrightable [128].
During the famous Oracle v. Google lawsuit (ongoing since 2012), Judge William H. Alsup
ruled that APIs itself are generally not copyrightable [10]. However, this decision has been
overturned by the Federal Circuit and the lawsuit is still ongoing [127].

Arnoud Engelfriet, a Dutch IT law specialist, provides a rule of thumb that states “if two
programmers would provide substantially the same piece of code, the code is not creative
under copyright law.” He also mentions the often-quoted rule that “anything less than ten
lines of code is ‘trivial’ and therefore not copyrighted”, but states that it is not grounded in
any copyright legislation he is aware of. Engelfriet concludes that “a [Stack Overflow code]
snippet that is more than one or two lines of standard function calls would typically be cre-
ative enough for copyright” and also argues against a fair use or quotation argument for such
code snippets, mentioned for example by Jeff Atwood, the co-founder of SO [316].

Since there exists no “international standard for originality” [103] that defines when a code
snippet is protected by copyright, we used popularity (phase 1), our own judgment (phase 2),
and the snippets’ length (phase 3) as proxy variables for their originality. In a related study,
we found that, as of December 2017, the mean size of code blocks on SO was 12 lines or
455 characters [45], which supports our assumption that many snippets on SO are, at least
according to their length, not trivial.

As outlined in the introduction, the code on SO may have been copied from a different
source, with additional licensing and copyright implications. We considered this in our re-
search design by analyzing the external availability of the snippets (see Sections 3.5 and 3.6)
and by excluding snippets that are also available from other sources (see Section 3.7).

58 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

3.3.2 Classification of Stack Overflow’s License

Generally, one can distinguish between permissive and copyleft licenses. Permissive licenses
permit using the licensed source code in proprietary software without publishing changes
or the derived work. Examples for permissive licenses include the MIT, Apache, and BSD
license families. In contrast to that, copyleft licenses have a share-alike requirement that
requires either modifications to the licensed content or the complete derived work to be
published under the same or a compatible license. Examples for the former, weaker, copy-
left licenses include the Mozilla and the Eclipse Public Licenses (e.g., MPL 2.0 and EPL 2.0);
examples for the latter, stronger, copyleft licenses, which are sometime also called “viral”
licenses [304], include the GNU General Public Licenses (e.g., GPL 2.0 and 3.0) and the Cre-
ative Commons Share-Alike Licenses (e.g., CC BY 2.0). The licenses that apply for the content
on SO (CC BY-SA 3.0 and 4.0) fall into the latter category and can thus be classified as strong
copyleft licenses.

3.3.3 Stack Overflow’s License Change Attempt

Licensing issues of source code posted on SO have been controversially discussed on differ-
ent sites of the Stack Exchange network [316, 317, 318]. In December 2015, SO tried to switch
to the more permissive MIT license for code snippets in new posts. First, they planned to
require attribution only upon request of the copyright holder or upon request of SO [318]
but after criticism from the community, they changed their proposal such that attribution
would always be required [319]. In January 2016, after a heated discussion, SO delayed the
implementation of a new license and since then, no new proposal has been made. Thus, as
of July 2018, all source code posted on SO is licensed under CC BY-SA 3.0 (and 4.0) and the
attribution and share-alike requirements apply.

3.3.4 Related Lawsuits

In the past, courts in the US and Europe ruled that open source licenses are enforceable
contracts and that violations of open source licenses can be handled like copyright claims.
In the Jacobsen v. Katzer lawsuit (2006–2010), the United States Court of Appeals for the
Federal Circuit ruled that the terms and conditions of the Artistic License 1.0, including at-
tribution, are “enforceable copyright conditions” [361]. In the Artifex v. Hancom lawsuit
(since 2016), the United States District Court for the Northern District of California denied
a motion to dismiss [99], arguing that a copyleft license like the GNU GPL can be treated
like a legal contract. This means that developers are able to sue when the terms of such a
license are violated, e.g., when derived work is not shared under a compatible license (see
the share-alike requirement of CC BY-SA 3.0). Moreover, it is possible to interdict the distri-
bution of such derived work or claim monetary damages: In 2004, the German District Court
of Munich affirmed an injunctive relief interdicting the distribution of a software based on
source code licensed under the GNU GPL, without complying with its license terms [190].
In the United States, open source projects failing to comply with open source licenses can
be targeted by DMCA takedown notices, which may force platforms like GitHub to remove
projects that allegedly infringed copyright [259]. Recently, the Regional Court in Bochum,
Germany, affirmed an obligation to pay compensation for damages in a case where source
code licensed under the GNU GPL was used in violation of the license terms [3].

3.4 Preliminary Study 59

Licensing issues may also be a risk in mergers and acquisitions of companies using source
code licensed under a copyleft license [79]. A famous case was Free Software Foundation
v. Cisco Systems [297]: Cisco acquired the networking company Linksys, which used GPL-
licensed code in some of their products without publishing the source code. After the Free
Software Foundation (FSF) sued Cisco, they reached a settlement agreement, in which Cisco
agreed to publish the source code and made an undisclosed financial contribution to the
FSF [362].

3.4 Preliminary Study

We started our research with a preliminary study to get first insights into developers’ prac-
tices regarding the usage and attribution of code snippets from Stack Overflow.

3.4.1 Method

The preliminary study was part of an online survey we conducted in October 2015 (see Sec-
tion 4.3.1). For this survey, we contacted users who were active on both SO and GH. To
match users on both platforms, we followed the approach of Vasilescu et al., utilizing the
MD5 hash value of users’ email addresses [347]. We derived our sampling frame from the
data dumps provided by Stack Exchange (August 18, 2015) [306] and GHTorrent (September,
25 2015) [164]. To identify active users, we checked if they contributed to a question (asked,
answered, or commented) on SO and committed to a project on GH since January 1, 2014.
This resulted in a sampling frame of 71,400 users from which we drew a random sample of
1,000 users. Of the 1,000 contacted users, 122 responded (12.2% response rate).

3.4.2 Results

Of all 122 respondents, 115 identified themselves as male, one as female and six did not
provide their gender. The majority of respondents (67%) reported their main software de-
velopment role to be software developer, the second-largest group were software architects
(14%). The average age of participants was 28.9 years (SD = 9.1) and they had an average
programming experience of 11.8 years (SD = 6.7). Most participants answered from Europe
(49%) and North America (38%).

We asked participants for what purpose they use SO and GH. Most users answered that
they use SO (98%) and GH (66%) for both private and work-related projects. Almost one
third of the respondents reported to use GH only for private projects (28%).

A central question of the survey was: “When was the last time you copied or adapted a
code snippet from Stack Overflow?” Most participants copied or adapted a snippet not more
than one month ago (79%) and over a third (39%) not more than one week ago. To get first
insights into the attribution practice, we asked how they referred to the corresponding SO
question or answer when they copied or adapted the snippet. Half of the respondents (49%)
“just copied/adapted the code snippet without any reference”, the others “added a source
code comment with a link to the Stack Overflow question/answer” (40%) or referred to SO in
another way, e.g., in a commit message (9%). Two participants did not answer this question.

60 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

Preliminary Study: Almost all participants (98%) stated that they use SO for both pri-
vate and work-related projects. Half of them (49%) reported that the last time they
copied or adapted a code snippet from SO, they did not attribute its origin; 40% added
a source code comment with a link to the corresponding question or answer.

3.5 Usage Without Attribution (RQ1 – Phase 1)

In our preliminary study, many developers reported that they did not attribute code snip-
pets copied from SO. Most participants who did attribute the snippets added a source code
comment with a link to the corresponding question or answer. Thus, we decided to utilize
BigQuery to find all links to SO questions and answers in all Java files in the GitHub data set.
Afterwards, we built regular expressions matching the snippets from the ten most frequently
referenced Java answers and searched for matches in all Java files in the data set to detect
unattributed usages of those snippets.

3.5.1 Method

Figure 3.1 visualizes our initial workflow for finding attributed and unattributed usages (in-
cluding the connection to other research questions). We considered all files ending with
.java to be Java source code files and applied the following regular expression (regex) to
each line of those files:

(?i:https?://stackoverflow\.com/[^\s)\.\"]*)

Because there are different ways of referring to questions and answers on SO, i.e., using
full URLs or short URLs, we mapped all extracted URLs to their corresponding sharing link
(ending with /q/<id> for questions and /a/<id> for answers). In the following, we use
the term reference to denote a link to content on SO. In the database schema of the BigQuery
GH data set, copied files have the same ID (hash value of the content). For our analysis,
we only considered distinct references, meaning that we counted references in files with the
same content only once. Because many files on GitHub are duplicates [148, 214], we dis-
tinguish between the number of distinct referencing files, meaning the number of distinct
files in which a URL was present in a source code comment, and the number of distinct ref-
erencing lines, meaning the number of distinct source code lines in which a URL was used
(exact string match including whitespaces). The former may exaggerate the number of dis-
tinct references as files may be copied and then slightly changed, the latter may understate
the number of distinct references as two developers may independently use the same source
code line to reference a question or an answer. When building the BigQuery GH data set,
“most” forks were excluded.2 In the first phase, we relied on the unique file IDs to exclude
copied files. In the third phase, we further excluded all repositories that were marked as forks
in the BigQuery GHTorrent data set (see Section 3.7).

Our first approach for finding unattributed usages of SO snippets utilized manually cre-
ated regular expressions to find matches of non-trivial code snippets in all public GH projects
containing Java code. Since this approach is time-consuming, we had to carefully select the

2https://github.com/fhoffa/analyzing_github/blob/master/README.md

https://github.com/fhoffa/analyzing_github/blob/master/README.md

3.5 Usage Without Attribution (RQ1 – Phase 1) 61

Figure 3.1 – RQ1-4 – Phase 1: We searched for attributed and unattributed usages of the code snip-
pets from the ten most frequently referenced answers on Stack Overflow (SO) in all Java files in the
BigQuery GitHub (GH) data set using regular expressions and used this data to answer our research
questions (time span of this phase: 07/2016–11/2016).

snippets for which we then built the regular expressions. We decided to extract the code
snippets from the ten most frequently referenced Java answers on SO, because we thought
that these snippets are likely to be also used without attribution (assuming that the attribu-
tion ratio is relatively stable across posts). In a next step, we randomly chose (up to) ten Java
source code files referencing the corresponding SO answer. Then, we manually created a
regex for each SO snippet and iteratively modified it to match both the snippet and as many
of the referencing Java files as possible, while taking care that it does not become too generic,
leading to false positives.

Table 3.1 lists the ten most frequently referenced Java answers. In the table, we included a
short description of the thread’s topic and mention whether the code in the answer is a whole
class, a single method, or just a few lines of code (snippet). We also added information about
the external availability of the source code from the SO post. The top-ranked Java snippet
was also available on a personal blog post by the same author. However, the author owns the
copyright for his blog post and provides no license, thus only the SO post allows the usage
of that snippet. Further, the SO thread is the first result on Google (as of June 8, 2017) when
searching for “human readable byte size java”. Therefore, the SO post is likely the primary
source for copying this particular snippet. The second snippet is based on a blog post by
a different author, also copyrighted without providing a license. Moreover, this blog post is
only available using the Internet Archive Wayback Machine.3 Therefore, also for this snippet
SO is likely to be the primary source. The third snippet is based on a different SO post, but
had been adapted. Thus, the license is still CC BY-SA 3.0. For the other snippets, we could
not identify an external source with a different license.

3http://web.archive.org/

http://web.archive.org/

62 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

Table 3.1 – RQ 1 – Phase 1: Ten most frequently referenced code snippets from SO Java answers;
one asterisk: link was broken and referred to a question, we selected two referenced snippets; two
asterisks: snippet based on external resource, but adapted.

Rank Answer ID Description Type Alternative Source

1 3758880 human readable byte size method blog (no license)
2 5445161** read InputStream to String method blog (no license)
3 9855338** convert byte array to hex String method other SO post
4 26196831 Android: RecyclerView onClick class none
5 7696791* Android: close soft keyboard snippet none
6 140861 hex dump String to byte array class none
7 2581754 sort Map<Key, Value> by values class none
8 5599842 format file size as MB, GB, etc. method none
9 326440 create Java String from file cont. method none

10 3145655 Android: get current location class none

Table 3.2 shows, for each of the ten Java answers, the number of distinct referencing lines
(LA) and the number of distinct referencing files (FA). Further, we provide the number of
distinct files with a reference to either to the answer or to the corresponding question (FAQ).
For this value we do not know if the developer actually wanted to refer to the snippet from
the specific answer we are considering or to another answer from the same thread. The table
also shows the number of GH references we used to test the regular expression and how
many of those references the regex matched.

We used BigQuery’s REGEXP_MATCH function to check all Java files in the GH data set for
matches of each regex. We provide the extracted SO snippets, the referencing Java code from
GH, the regular expressions, and the SQL scripts as supplementary material [25].

3.5.2 Results

Table 3.3 shows how many files of the data set each regex matched and how many of those
matches were distinct files. We report how many of the matched files contained a reference
to the answer or the corresponding question (REF) and how many files did not contain a
reference (NO-REF). We also calculated the recall by comparing FAQ and REF, i.e., the number
of distinct files with a reference to either the answers or the corresponding question and the
number of matched files containing such a reference. This allowed us to assess how good
the regex was in matching possible duplicates of the snippet.

We calculated two estimates for the ratio of files with attributed snippets: First, we com-
pared the number of distinct referenced matches (REF) to the total number of distinct matches
(DISTINCT). The second estimate is the number of distinct matches with a reference either
to the answer or to the corresponding question (FAQ) compared to the number of distinct
matches (DISTINCT). Please note that the comparisons with FAQ understate the recall and
overstate the attribution ratio, because FAQ likely includes references to other answers of the
thread. To evaluate the number of false positives, we checked (up to) 50 matches for each
regex and found no match that we did not consider to be a clear copy of the snippet.

To illustrate the procedure, we present the snippet from the most frequently referenced
Java answer and the corresponding regex below. The snippet is a method returning a human-

http://stackoverflow.com/a/3758880
http://stackoverflow.com/a/5445161
http://stackoverflow.com/a/9855338
http://stackoverflow.com/a/26196831
http://stackoverflow.com/a/7696791
http://stackoverflow.com/a/140861
http://stackoverflow.com/a/2581754
http://stackoverflow.com/a/5599842
http://stackoverflow.com/a/326440
http://stackoverflow.com/a/3145655

3.5 Usage Without Attribution (RQ1 – Phase 1) 63

Table 3.2 – RQ 1 – Phase 1: Ten most frequently referenced code snippets from SO Java answers,
references in GH Java files and testing of regular expressions for those snippets; LA: number of distinct
referencing lines, FA: number of distinct referencing files, FAQ: number of distinct referencing files
including references to corresponding question.

Rank References Regex
LA FA FAQ TESTED MATCHED RECALL

1 21 43 122 10 9 90.0%
2 20 39 100 10 7 70.0%
3 19 27 108 10 10 100.0%
4 12 15 19 10 9 90.0%
5 9 20 34 9 4 44.4%
6 8 12 74 7 7 100.0%
7 8 9 41 8 8 100.0%
8 7 17 36 7 5 71.4%
9 7 12 47 7 1 14.3%

10 7 12 26 6 6 100.0%

All 118 206 607 84 66 M 78.0%

Table 3.3 – RQ 1 – Phase 1: Ten most frequently referenced code snippets from SO Java answers; esti-
mated ratio of unattributed usages detected using regular expressions; number of matched files (ALL),
distinct matches (DISTINCT), distinct matches with reference to SO (REF), distinct matches without
reference to SO (NO-REF).

Rank Matches Recall Attribution
ALL DISTINCT REF NO-REF REF/FAQ REF/DISTINCT FAQ/DIST.

1 997 448 97 351 79.5% 21.7% 27.2%
2 1,843 913 60 853 60.0% 6.6% 11.0%
3 2,662 902 87 815 80.6% 9.6% 12.0%
4 420 170 18 152 94.7% 10.6% 11.2%
5 1,492 402 25 377 73.5% 6.2% 8.5%
6 2,642 807 65 742 87.8% 8.1% 9.2%
7 160 124 12 112 29.3% 9.7% 33.1%
8 355 174 22 152 61.1% 12.6% 20.7%
9 295 225 5 220 10.6% 2.2% 20.9%

10 65 33 11 22 42.3% 33.3% 78.8%

All 10,931 4,198 402 3,796 M 61.9% M 12.1% M 23.2%

64 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

readable string representation of a byte value (e.g., for 1024 it returns 1.0 kB or 1.0 KiB) [7].
It was referenced in 21 distinct lines and in 43 distinct files, meaning that several files used
the same line content to reference the snippet. Together with the corresponding question,
we found 122 distinct referencing files (see Table 3.2).

String humanReadableByteCount(long bytes, boolean si) {
int unit = si ? 1000 : 1024;
if (bytes < unit) return bytes + " B";
int exp = (int) (Math.log(bytes) / Math.log(unit));
String pre = (si ? "kMGTPE" : "KMGTPE").charAt(exp-1) + (si ?

"" : "i");
return String.format("%.1f %sB", bytes / Math.pow(unit, exp),

pre);
}

Starting with the above snippet, we created a regular expression and iteratively refined it
until it matched 9 out of 10 referencing files from GH. The final regular expression, which can
be found below, matched 80% of the files containing a reference either to the answer itself or
the corresponding question.

((?i:String[\s]+\w+\([^\{]*long[^\{]+\)[\s]*\{[\s\S]+if
[\s]*\([^<]+<[^\)]+\)[\s\S]*return[^;]+\+[^;]*\"\ B\"
[\s\S]+int[\s][^\=]+\=[\s]*\([\s]*int[\s]*\)[\s]*\([\s]*
Math[\s]*\.[\s]*log[\s]*\([^\)]+\)[\s]*\/[\s]*Math[\s]*
\.[\s]*log[\s]*\([^\)]+\)[\s]*\)[\s\S]+return[^\}]+
String[\s]*\.[\s]*format[\s]*\([^\}]+\}))

Only 21.7% of the files with a match for this regular expression were attributed; compared
to FAQ the ratio was 27.2%. On average, the regular expressions we created matched 78.0%
of the referencing GH Java files from the test sets (see Table 3.2) and 61.9% of the files in FAQ

(see Table 3.3). The average ratio of attributed matches was 12.1%; compared to FAQ, the ratio
was still only 23.2%. As motivated above, the latter ratio overstates the amount of referenced
usages and can thus be considered an upper bound. Because the regular expressions were
rather strict and false positives were not present in the samples we checked, we can estimate
that at most 23.2% of the copies of the ten most frequently referenced SO Java code snippets
are being attributed when copied into Java files on GH.

Usage Without Attribution (RQ1 – Phase 1): At most 23.2% of the copies of code snip-
pets from the ten most frequently referenced SO Java answers in Java files on GH were
attributed using a link to SO.

3.6 Usage Without Attribution (RQ1 – Phase 2)

To triangulate our estimate from the first phase that at most 23.2% of the usages of SO code
snippets in GH projects are attributed, we followed a second approach and used a token-
based code clone detector, the PMD Copy-Paste Detector version 5.4.1 [256], to find unrefer-
enced usages of SO code snippets in a random sample of popular GH Java projects.

3.6 Usage Without Attribution (RQ1 – Phase 2) 65

Watcher count filter for non-fork Java GH projects (n=925,536)

0
50
00
0

10
00
00

75
00
00

← median, 25% and 75% quantile 99% quantile →

sampling frame →

0 5 10 15 20 25 ≥ 29

Watcher count

N
um

be
r o

f p
ro

je
ct

s

Figure 3.2 – RQ1 – Phase 2: Histogram visualizing the selected sampling frame of popular GitHub
Java projects (n = 9,437); the 99% quantile of all non-fork Java projects was 29 watchers (M = 2.77,
Mdn = 0, Q1,3 = 0); based on the GHTorrent data dump 2016-02-01.

3.6.1 Method

We decided to use the PMD Copy-Paste Detector (CPD) for finding clones of SO snippets,
because this tool is open-source, actively developed, and widely used. It is integrated into
the IntelliJ Java IDE and there are plugins for other IDEs as well.

The detection of code clones within a set of source code files is a computationally expen-
sive task. Therefore, we had to restrict our analysis to a sample of GH Java projects and a
sample of Java code snippets from SO. A random sample of GH projects would contain many
small personal projects, homework assignments, or other projects that are not “engineered
software projects” [192, 245]. Filtering projects according to their popularity, measured us-
ing the number of watchers or stargazers, has been used in several well-received studies and
proved to have a very high precision (almost 0% false positives) [245]. Hence we applied a
similar filtering strategy.

Our sampling frame consisted of all Java projects in the GHTorrent data set (February 16,
2016) that were no forks, not deleted, and had at least 29 watchers (99% quantile for all Java
projects, see Figure 3.2). We excluded forks, because they may skew the results by adding
almost identical repositories to the sample. We excluded deleted repositories, because we
would not be able to retrieve the source code of such repositories. From this sampling frame
(n = 9,437), we randomly selected 3,000 Java projects. We were able to successfully download
2,313 of them. Some downloads failed, because our script only tried to retrieve the master
branch, which may not exist, and some repositories may have been renamed or deleted be-
tween the creation of the GHTorrent data dump and the time we downloaded the sample
(April 21, 2016).

66 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

We searched for two different sets of SO code snippets in the sample of GH projects: One
set with snippets that had referenced usages in the GH projects under analysis (Sgh) and one
set with popular Java snippets identified using the data from the first phase of our research
(Stop100). The first set allowed us to compare referenced usages of SO snippets to unrefer-
enced usages of the same snippets; the second set allowed us to analyze how many copies of
popular SO Java snippets were being attributed in the sample of GH projects. For the first set,
we searched for references to SO in all Java files in the project sample using the same regular
expression as in the first phase. We then manually extracted the snippets from all referenced
answers, dropping answers that did not contain code or only trivial snippets (e.g., simple
API calls, snippets for conceptual questions, etc.). This resulted in a total number of 137 ex-
tracted SO snippets. For the second set of snippets, we manually extracted the code from
the 100 most frequently referenced Java answers, identified using the same data and ranking
approach as in the first phase (see Section 3.5). We used the number of distinct referenc-
ing lines as the primary and the number of distinct referencing files as the secondary sort
key. This resulted in 111 snippets. As supplementary material [25], we provide all extracted
snippets, the names of all analyzed Java projects, as well as the retrieval scripts we used.

As a last preparation step, we checked the intersection of the two snippet sets to prevent
snippets that are in both sets biasing the results. We identified 26 snippets from 18 answers
to be in Sgh ∩Stop100. We present the results for each snippet set separately and count the
intersecting snippets and matches only once in the summary. Before presenting the results,
we describe how we calibrated CPD for finding SO snippets in Java projects.

3.6.2 Calibration of the Code Clone Detector

We iteratively optimized CPD’s parameters using Sgh as ground truth, because for this set
of snippets we already identified the attributed usages and could thus determine precision
and recall. For Java files, the relevant parameters to configure CPD are the minimum token
length that should be reported as a duplicate (mt) and three boolean flags to configure text
comparison: One to ignore language annotations (ia), one to ignore constant and variable
names (ii), and one to ignore number values and string contents (il). To compare the
results of different iterations, we used the following definitions of precision and recall:

Definition 3.6.1. Let C (copies) be a relation over a set of code snippets S and a set of source
code files F :

C ⊆ S ×F

Let Cso ⊆ C be the set of copies identified by an SO answer URL in the source code file and
Ccpd ⊆ C be the set of copies identified by CPD. Then we define precision and recall as fol-
lows:

precision = |Cso ∩Ccpd|
|Ccpd|

recall = |Cso ∩Ccpd|
|Cso|

Please note that the precision may be <1 even if all copies found by CPD are actually dupli-
cates of a snippet in Sso . The reason for this is that the Java files in our test set may contain
copies of these snippets that are either unreferenced or are referenced using a link to the
question. As CPD cannot be configured to only find clones of one set of files in another, we
wrote a wrapper to exclude matches within the snippets and within the analyzed projects.
The wrapper returns the matches between snippets and Java files in the projects along with

3.6 Usage Without Attribution (RQ1 – Phase 2) 67

Comparison of CPD configurations

15 20 25 30 35 40 45 50 55 60 65 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Minimum tokens

P
re

ci
si

on
 a

nd
 re

ca
ll Precision (mt)

Precision (mt,ia)
Precision (mt,ia,ii)
Recall (mt)
Recall (mt,ia)
Recall (mt,ia,ii)

Figure 3.3 – RQ1 – Phase 2: Comparison of different CPD configurations: black: only mt set; blue:
mt and ia set; red: mt, ia, and ii set; dashed line: precision, solid line: recall; final configuration:
mt= 40 (precision = 0.94, recall = 0.35).

the line numbers of the exact positions of each match. From this data, we derived the rela-
tion Ccpd. An example for one entry is provided below:

so-answer-3054692, Floobits-floobits-intellij/.../Utils.java

In this example, the snippet extracted from the SO answer with ID 3054692 was found in
the file identified by the given path (the root is the name of the GH repository).

We derived Cso from the references we already extracted (Sgh). Using these two relations,
we calculated precision and recall for each test run according to the above definitions.

Figure 3.3 shows the results for different configurations of CPD. We conducted three test
runs with mt ∈ {15,20, ...,95,100}: (1) without further parameters, (2) with flag ia set, and
(3) with flags ia and ii set. First, we also included the flag il, but with the relatively small
values we used for mt this resulted in too many false positive results. Moreover, setting il
lead to a runtime that was magnitudes longer than the other configurations. Because our
goal was to increase precision and avoid false positives, we dropped ii despite the slightly
higher recall. Since the flagiahad almost no effect on precision and recall (only few snippets
with annotations in Sgh), we also dropped it.

We achieved the highest precision by setting mt = 40 without further parameters (prec =
0.94, rec = 0.35). We selected mt = 25 as a second candidate because of its higher recall
(prec = 0.85, rec = 0.53). Table 3.4 shows the results for these two configurations. We divided
the matched files into true positive (Cso ∩Ccpd) and false positive results (Ccpd\Cso). We man-
ually investigated all true and false positives for the two configurations and found that all
matches were true positives; the false positives were clones that were not referenced. Never-
theless, the configuration with mt = 25 contained some relatively small matches, e.g., parts

68 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

Table 3.4 – RQ 1 – Phase 2: Results for different CPD configurations; all matches, distinct snippet-file
pairs, true positive matches (Cso ∩ Ccpd), false positive matches (Ccpd\Cso), precision, and recall.

Configuration Matches
ALL DISTINCT TRUE POS. FALSE POS. PRECISION RECALL

mt= 40 103 51 48 3 94% 35%
mt= 25 268 84 72 12 85% 53%

of for-loops, that were likely to produce false positives outside of our test collection. Based
on the results of our test runs, we chose mt = 40 for the final CPD configuration. As we de-
cided not to set ia and ii, this configuration can only detect type-1 clones of the snippets,
i.e., copied code that only varies in whitespace, layout, or comments [275].

3.6.3 Results

Using the configuration mt = 40, we searched for type-1 clones of the two snippet sets Sgh

and Stop100 in two separate runs. Each run took between 8 and 9 hours on a regular Desktop
PC running Ubuntu 14.04 LTS (Intel Core i5-4670, 16 GB RAM, SSD). Table 3.5 lists the results
for each snippet set. It shows the number of snippets in each set, the number of answers
from which the snippets were extracted, and the number of matched snippets, answers, and
files. In the analyzed GH projects, we found 634 Java files from 274 projects that contained a
reference to SO (0.14% of all Java files in the sample and 12% of all projects. The table shows
how many of the matched files contained a reference to SO and the number of repositories
containing a matched file.

In a first data cleaning step, we analyzed the results and found that one of the snippets in
Stop100 was responsible for 272 matches (48% of all matches). This snippet contained a long
list of invalid characters in file names. We looked at the matched files and found that most
of the matches used this array in another context than the SO snippet. Thus, we considered
these matches to be false positives and excluded them from our analysis. To estimate the
number of false positives in the remaining matches, we randomly chose 100 distinct matches
(snippet-file pairs) from each set and manually checked whether the files actually contained
a copy of the snippet. We rated all analyzed matches as true positives.

We further checked if the snippets were available from an external source, meaning a web-
site, blog, or source code repository outside of the SO platform. If snippets were also avail-
able outside of SO, more permissive licenses could apply that allow using the snippet without
attributing SO as the source. We followed all links in the SO answers from which the snippets
were taken and checked if the snippet was available in the linked resource. If it was avail-
able, we searched the websites for licenses or terms of service that apply for the content.
Tables 3.6 and 3.7 summarize the results of this analysis. Table 3.6 shows how many answers
provided an external source for the snippet (12%), together with the type of the source. We
found copies of the snippets in blog posts (8), GitHub repos (6), Android or Java bug reports
(5), and in the official Android or Java documentation (2). For the answers having an exter-
nal source, Table 3.7 shows if this source allows to use the snippet under a more permissive
license than CC BY-SA 3.0. Twelve of those 21 answers provided a license or terms of service,

3.7 Usage Without Attribution (RQ1 – Phase 3) 69

Table 3.5 – RQ 1 – Phase 2: Results of searching copies of two sets of Stack Overflow snippets in a
sample of GitHub projects (n = 2,313): Columns named MATCHED show number of distinct matched
snippets, answers, files, and repositories; column REF shows number of matched files containing a
reference to Stack Overflow.

Set
Snippets Files Repos

ALL MATCHED ANSWERS MATCHED MATCHED REF MATCHED

Sgh 137 53 (39%) 102 52 (51%) 163 58 (36%) 124 (5%)
Stop100 111 48 (43%) 85 46 (54%) 173 25 (14%) 125 (5%)

∪S 222 101 (46%) 169 86 (51%) 297 70 (24%) 199 (9%)

of which only three were more permissive than Stack Overflow’s license: In one case,4 the
author added a comment indicating that the snippet is free to use: “There is no copyright
on the code. You can copy, change and distribute it freely. Just mentioning this site should
be fair”; two sources were licensed under the Apache 2.0 license. One source was licensed
under the GNU GPL 2.0, which is also a copyleft license and hence not more permissive than
CC BY-SA 3.0; the other eight sources had terms of service restricting the usage of the snip-
pet. We can conclude that even if some snippets are also available outside of SO, this does
not necessarily mean that the external sources are more permissive than SO’s license.

Overall, CPD found one or more copies of snippets from the two snippet sets in 297 dis-
tinct files. The identified clones were duplicates of 101 different snippets (46% of all distinct
snippets in the sets) from 86 answers (51% of all answers in the sets). Only 70 matched files
(24% of all matched files) contained a reference to a SO question or answer. In summary,
199 repositories (9% of all repositories in the sample) contained files with copies of snippets
from SO. As we did not observe any false positive results (except for the match we excluded
in the data cleaning step, see above), the number of matches can be interpreted as a lower
bound for the amount of copies that were actually present in the sample.

Usage without attribution (RQ1 – Phase 2): Using CPD, we found that in a sample of
popular Java projects (n = 2,313), 199 repositories (9%) contained a copy of one of the
222 SO snippets we considered. Only 24% of the matched files contained a reference to
SO as required by SO’s license.

3.7 Usage Without Attribution (RQ1 – Phase 3)

Our third and last approach to answer RQ1 addressed the main shortcoming of the previous
phases, which was the relatively small number of SO code snippets being analyzed. Since
the approaches of the first two phases do not scale due to the manual creation of regular
expressions (phase 1) or the performance of the code clone detector (phase 2), we focused
on exact matches of SO snippets in the third phase, which are easier to find. We searched
for exact matches of SO snippets in GH projects using the public BigQuery GH, GHTorrent,

4http://balusc.omnifaces.org/2007/07/fileservlet.html

http://balusc.omnifaces.org/2007/07/fileservlet.html

70 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

Figure 3.4 – RQ1 – Phase 3: We searched for as many exact matches of Java snippets from Stack Over-
flow (SO) in public GitHub (GH) projects as feasible. We filtered the GH Java projects to exclude small
‘toy’ projects and further excluded short and unpopular SO snippets. NLOC means that we normal-
ized the source code before we determined its length. In the end, we searched for exact matches of
29,370 snippets in 1,7m Java files (50.5 bil. combinations) (time span of this phase: 03/2017–04/2017).

3.7 Usage Without Attribution (RQ1 – Phase 3) 71

File size filter for GH Java files (n=6,851,022)

 75% quantile

Excluded

Excluded

0 68 136 204 272 340

0

1m

2m

3m

4m

Normalized file size (LOC)

N
um

be
r o

f f
ile

s

Fork No fork

Fork filter for GH projects containing Java files (n=307,489)

0

50k

100k

150k

200k

250k

ExcludedN
um

be
r o

f p
ro

je
ct

s

Watcher count filter for GH Java projects (n=260,498)

 75% quantile

Excluded

0 1 2 3 4 5 6

0

50k

100k

150k

200k

Number of watchers

N
um

be
r o

f p
ro

je
ct

s

File count filter for GH Java projects (n=260,498)

 25% quantile

Excluded

0 5 10 15 20 25 30 35 40 45 50 55 60

0

20k

40k

60k

80k

Number of Java files

N
um

be
r o

f p
ro

je
ct

s

Figure 3.5 – RQ1 – Phase 3: Barplot and histograms with boxplots visualizing the applied filters to re-
duce the number of GH Java files we searched for exact matches of SO snippets; 65 LOC: 75% quantile
of all GH Java files; 1 watcher: 75% quantile of all GH projects containing Java files; 4 files: 25% quan-
tile of all GH projects containing Java files; based on the GHTorrent BigQuery data set 2017-01-19.

72 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

Score filter for SO Java answers (n=851,795)

 Mdn=1

Excluded

Selected

 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

0
50k

100k
150k
200k
250k
300k
350k

Score

N
um

be
r o

f a
ns

w
er

s

Length filter for SO Java code blocks (n=1,063,993)

 Mdn=7

Excluded

Selected

0 5 10 15 20 25 30 35 40 45 50 55 60

0

50k

100k

150k

200k

250k

300k

Normalized size of code blocks (LOC)

N
um

be
r o

f a
ns

w
er

s

Figure 3.6 – RQ1 – Phase 3: Histograms with boxplots visualizing the applied filters to reduce the
number of Java code snippets from Stack Overflow (SO) in our search for exact matches of these snip-
pets in Java files hosted on GitHub (GH); based on the Stack Overflow BigQuery data set 2017-03-27.

3.7 Usage Without Attribution (RQ1 – Phase 3) 73

Table 3.6 – RQ 1 – Phase 2: External sources for snippets: The table shows the number of answers with
snippets in the two sets and how many of those answers contained a link to an external source. Ab-
breviations: Snippets also available in a blog post (BLOG), in a GitHub repository (GH), in an Android
or JDK bug description (BUG REPORT), in an Android or Java documentation page (DOC).

Set
External source in SO answers

ALL NO YES BLOG GH BUG REPORT DOC

Sgh 102 89 (87%) 13 (13%) 6 (6%) 2 (2%) 4 (4%) 1 (1%)
Stop100 85 76 (89%) 9 (11%) 2 (2%) 5 (6%) 1 (1%) 1 (1%)

∪S 169 148 (88%) 21 (12%) 8 (5%) 6 (4%) 5 (3%) 2 (1%)

Table 3.7 – RQ 1 – Phase 2: License of external sources for snippets: The table shows under which
licenses the snippets from external sources can be used; NO: no license provided, FREE: author added
a comment that the code is free to use, TOS: usage is restricted by the website’s terms of service,
APACHE 2.0: available under the Apache 2.0 license, GPL 2.0: available under the GPL 2.0 license.

Set
License of external sources

ALL NO YES TOS FREE APACHE 2.0 GPL 2.0

Sgh 13 4 (31%) 9 (69%) 7 1 1 0
Stop100 9 6 (67%) 3 (33%) 1 0 1 1

∪S 21 9 (43%) 12 (57%) 8 1 2 1

and SO data sets [160, 161, 166] and iteratively filtered the resulting matches to exclude false
positives and snippets that were also available in other sources than SO.

3.7.1 Method

For various reasons, it is neither feasible nor sensible to search for all code snippets on SO in
all projects on GH. BigQuery’s GitHub data set consists of (almost) all public files on GitHub,
which includes many small software projects of single users and also repositories that are
not used for hosting software projects [192, 245]. Moreover, very small code snippets from
SO would produce many false positives and it is likely that such snippets are not protected by
copyright. Since there is no “international standard for originality” [103] that defines when
a code snippet is protected by copyright, we based our filter on the length distribution of SO
code snippets and only selected snippets having a certain size. We thus used the length of
the snippets as a proxy variable for their originality.

Another reason to filter the snippets and projects was to reduce the complexity to make the
search for exact matches feasible. For every filter we applied, we considered the distribution
of values for the corresponding variables. Figure 3.4 visualizes how we filtered the Java files
and the Java snippets to reduce the number of combinations to a level that allowed us to
employ BigQuery’s STRPOS function to search for matches of the snippets in the files.

We first used the BigQuery GHTorrent data set to filter out repositories that were forks of
other repositories (see Figure 3.5). Then, we excluded projects with less than five Java files
and less than one watcher to get rid of the many ‘toy’ projects hosted on GitHub [192]. Af-

74 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

Figure 3.7 – RQ1 – Phase 3: Our workflow to remove false positive matches and snippets available
from other sources than the SO post.

terwards, we normalized the contents of the remaining Java files by removing all lines with
import or package statements, deleting comments, and normalizing the whitespaces (re-
moving empty lines and converting multiple newline characters to one newline character).
We excluded Java files having less than 68 normalized lines of code, which was the 75% quan-
tile for all Java files, resulting in a sample of 1,720,587 files from 64,281 projects. To improve
the substring matching, we then further normalized the file contents by converting the char-
acters to lower case and by deleting semicolons, curly and regular braces, and all whitespace
characters.

To retrieve the Java snippets for the substring search, we first extracted all answers to ques-
tions tagged with java or android from the BigQuery SO data set. Then, we analyzed the
score of the answers. To concentrate on answers that gained a certain degree of attention,
we excluded all answers with a score of less than ten (see Figure 3.6). Then, we used the
Markdown representation of the posts to identify and extract continuous code blocks from
the answers. We normalized the snippets exactly like the Java files and analyzed their length.
As we were interested in non-trivial code snippets, we removed all code blocks with less than
6 normalized lines, which excluded about a third of the code blocks. We then further nor-
malized the snippets, analogously to the file contents. To illustrate the normalization, we
provide the normalized version of the snippet presented in Section 3.5.2:

stringhumanreadablebytecountlongbytes,booleansiintunit=si?1000:
1024ifbytes<unitreturnbytes+"b"intexp=intmath.logbytes/math.log
unitstringpre=si?"kmgtpe":"kmgtpe".charatexp-1+si?"":"i"return
string.format"%.1f%sb",bytes/math.pow(unit,exp),pre

After the substring search was complete, we employed different approaches to exclude
false positives from the matches (see Figure 3.7): First, we manually investigated all matches
of SO answers with links to external sources and checked whether the code on GH may have
also been copied from there. We observed that many repositories contained mirrors of the

3.8 Summary (RQ1 – Phases 1–3) 75

OpenJDK or the Android source code. To exclude matches involving files from those sources,
we used a heuristic based on path names. We then manually investigated the SO posts of all
remaining snippets and excluded snippets that we either rated as being too trivial or incom-
plete, or where the post indicated that the snippet has been copied from a third source (with-
out providing a link). As motivated above, there is no international standard defining when
a snippet is original enough to be copyrightable. Our notion of ‘too trivial’ included snippets
that consist only of a few API calls or that are so simple that another developer would likely
come up with the same code. Moreover, we checked if the snippets are ‘complete’ in the
way that they are ready to copy-and-paste, without substantial modifications. Since those
judgments are, to some degree, subjective, we tried to mitigate a possible bias by discussing
borderline cases.

As a last step, we employed the GitHub API and searched for the commit that added the
snippet to the repo. We then removed matches where the commit on GH was older than the
post on SO.

3.7.2 Results

After removing potential false positive matches and snippets that were also available from
other sources, the result set consisted of 1,369 snippet-file pairs. For the remaining matches,
we are quite confident that they are in fact clones of the SO snippets and are not copied from
a different source. Only 104 (7.6%) of the snippet-file pairs were attributed using a link to one
of the SO posts containing the snippet (some snippets were present in more than one post)
or to the corresponding questions. We found exact matches of SO snippets in 764 (1.19%) of
the 64,281 analyzed GH repositories. Using the BigQuery GH data set, we also analyzed the
licenses of those repositories. The results of this analysis can be found in Section 3.9.

Usage Without Attribution (RQ1 – Phase 3): We searched for exact matches of 23,829
Java snippets from SO in 64,281 GH projects and excluded snippets available in external
sources. Only 7.6% of the 1,369 matches were attributed.

3.8 Summary (RQ1 – Phases 1–3)

In this section, we summarize our results from all three approaches to quantify the amount
of unattributed usages of non-trivial Java code snippets from SO in public GH projects (RQ1).
For each phase, Table 3.8 provides an overview on: (1) the number of distinct references to
answers and questions in the analyzed Java files, (2) the number of Java files and repositories
we analyzed, and (3) the number and ratio of attributed usages of SO code snippets in the
analyzed files.

Taking all three phases into account, we consider one quarter to be a reasonable upper
bound for the ratio of attributed usages of SO Java snippets in GH files (see Table 3.8, column
Files → ATTR). Between 3.3% and 11.9% of the analyzed repositories contained references to
SO questions or answers (Repositories → REF). The table further shows the number of dis-
tinct analyzed files (Files → COUNT), along with the percentage of files containing a reference
to SO (Files → REF).

76 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

Table 3.8 – Summary of results from phases 1 to 3: Distinct references to answers (A) or questions
(Q) on Stack Overflow (SO) in the Java files from GitHub analyzed in each phase; number of analyzed
files and repositories, files/repos containing a reference to SO, files/repos containing a copy of a SO
snippet, attributed copies of SO snippets.

Ph.
References Files Repositories
A Q COUNT REF COPY ATTR COUNT REF COPY

1
5,014 16,298 13.3m 18,605 4,198 402 336k 11,086 3,291

23.5% 76.5% 0.09% 0.03% 9.6% 3.3% 1.0%

2
209 463 445k 634 297 70 2,313 274 199

31.1% 68.9% 0.14% 0.07% 23.6% 11.9% 8.6%

3
1,551 4,843 1.7m 5,354 1,369 104 64,281 3,536 1,332

24.3% 75.7% 0.31% 0.08% 7.6% 5.5% 2.1%

Moreover, Table 3.8 lists the number of distinct references to SO posts we identified in each
phase (column References), where distinct means that we counted copied files only once. If
one file contained the same URL several times, we also counted it only once. In our analysis,
we ignored URLs that were either malformed or referred to other content on SO such as tags
or users. For instance, of all SO URLs we found in the first phase, 2.16% did not refer to a
question or an answer.

Generally, developers were more likely to refer to a question, that is to the whole thread,
compared to a particular answer. In the first phase, only 0.09% of the analyzed files and only
3.3% of the analyzed projects contained a reference to SO. However, these results include all
public files on GH in the BigQuery data set, which includes many small software projects of
single users and also repositories that are not used for hosting software projects [192, 245].

3.9 Frequency of Licensing Conflicts (RQ2)

To assess how often the license of repositories containing code copied from SO conflicts
with SO’s license (RQ2), we retrieved the license of all repositories previously identified as
containing code from SO. To this end, we employed the GitHub API (phase 1+2) and the Big-
Query GH data set (phase 3). Tables 3.9, 3.10, and 3.11 show the five most common licenses
of the matched repositories from each phase. We provide the complete lists as supplemen-
tary material [25]. Between 1.82% (attributed matches in phase 1) and 38.9% (unattributed
matches in phase 2) of the matched repositories did not provide a license (or at least none
that the GitHub API was able to identify). The relatively large number of repositories without
a license may seem unusual, but it is in line with a recent study by Meloca et al., who found
that it is common in open source projects to not provide a license [229]. Moreover, some files
or directories may have their own license, differing from the repository’s license. As we never
observed this for the files we manually analyzed, we relied on the repository’s license for our
analysis.

None of the analyzed projects used the CC BY-SA 3.0 or the CC BY-SA 4.0 license, which
would be share-alike compatible with the content from SO. One could leverage the upwards
compatibility of CC BY-SA 3.0 and CC BY-SA 4.0 [102] and the share-alike compatibility of CC

3.10 Adherence to Attribution Requirements (RQ3) 77

BY-SA 4.0 and GPL 3.0 to achieve a share-alike compatibility of CC BY-SA 3.0 and GPL 3.0.
Still, only 60 (1.8% of all matched repos in phase 1), 6 (3.0% of all matched repos in phase
2), respectively 19 (1.4% of all matched repos in phase 3) repositories were licensed under
GPL 3.0 and attributed the code copied from SO as required by the license. Thus, only those
85 repositories (1.8% of all matched repos) may have used the snippets in a way compatible
with CC BY-SA 3.0, meaning with attribution and with a share-alike compatible license.

Frequency of Licensing Conflicts (RQ2): At most 1.8% of all analyzed repositories con-
taining code from SO used the code in a way compatible with CC BY-SA 3.0.

3.10 Adherence to Attribution Requirements (RQ3)

Until May 2018, SO defined certain attribution requirements in their terms of service [312].
The following information was required when content from SO was republished:

1. A visual indication that the content is from SO,

2. A hyperlink directly to the original question,

3. The authors’ names for every question and answer,

4. A hyperlink for each author to their profile page on SO.

However, Creative Commons states that one cannot “insist on the exact placement of the
attribution credit” [103]. Thus, it is unclear whether the above attribution requirements can
actually be enforced by SO. Moreover, Creative Commons points to the fact that altering a
CC license through “indirect means”, like terms of service, could make the modified license
incompatible with the CC license itself. Nevertheless, our goal was to find out to what degree
developers adhere to SO’s attribution requirements when they refer to SO posts in source
code comments (RQ3). As described in the introduction, SO’s revised terms of service do not
mention the attribution requirements anymore, but they are still linked from the footer of
the website (visible for each thread) and from the help page. Regardless of the enforceability
of those requirements, the following analysis provides valuable insights into how GH users
reference code copied or adapted from SO answers.

3.10.1 Method

In the first phase of our research, we identified 2,443 distinct SO answers that were refer-
enced from at least one Java file on GH. We drew a random sample of those answers to inves-
tigate how GH users attribute code snippets from SO (n = 100). If a URL in the sample had
multiple references, we randomly chose one of them.

To determine the margin of error for this sample, we first calculated the standard error
(SE) [6], assuming that the probability to observe a correct attribution is 50% (p = 0.5). For
our sample size of 100, this probability yields a standard error of 0.05. In fact, we did not
observe a correct attribution in any case (see Section 3.10.2), thus the actual probability is
likely to be much lower. Based on the standard error and a confidence level of 95% (α= 0.05),

78 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

Table 3.9 – Five most common licenses of GitHub repositories matched in phase 1 containing at-
tributed or unattributed copies of code snippets from Stack Overflow.

SPDX license name
Number of repos containing a SO code snippet clone that was:
unattributed (n = 2,962) attributed (n = 329)

Apache-2.0 921 (31.1%) 99 (30.1%)
MIT 621 (21.0%) 72 (21.9%)
GPL-3.0 435 (14.7%) 60 (18.2%)
GPL-2.0 284 (9.6%) 21 (6.4%)
BSD-3-Clause 82 (2.8%) 9 (2.7%)

Table 3.10 – Five most common licenses of GitHub repositories matched in phase 2 containing at-
tributed or unattributed copies of code snippets from Stack Overflow.

SPDX license name
Number of repos containing a SO code snippet clone that was:
unattributed (n = 144) attributed (n = 55)

None 56 (38.9%) 18 (32.7%)
Apache-2.0 33 (22.9%) 15 (27.3%)
GPL-3.0 17 (11.8%) 6 (10.9%)
MIT 6 (4.2%) 4 (7.3%)
GPL-2.0 4 (2.8%) 2 (3.6%)

Table 3.11 – Five most common licenses of GitHub repositories matched in phase 3 containing at-
tributed or unattributed copies of code snippets from Stack Overflow.

SPDX license name
Number of repos containing a SO code snippet clone that was:
unattributed (n = 1,169) attributed (n = 163)

Apache-2.0 353 (30.2%) 36 (37.4%)
MIT 239 (20.4%) 25 (15.3%)
GPL-3.0 211 (18.0%) 19 (11.7%)
None 153 (13.1%) 61 (37.4%)
GPL-2.0 89 (7.61%) 8 (4.9%)

3.10 Adherence to Attribution Requirements (RQ3) 79

we calculated the margin of error by multiplying the z-score [6, 49, 92]: z(α/2)·SE = 0.10. Thus,
with the above-mentioned assumptions, the margin of error for our estimation of references
not adhering to the attribution requirements is 10 percentage points. This means that, even
if we did not observe a correct attribution in any of the sampled cases, there could still be up
to 10% references adhering to the attribution requirements (confidence level 95%).

We manually extracted the snippets from SO and the referencing code from GH and coded
how and where the user attributed the snippet and if he or she just copied, or also adapted,
the snippet. We provide the extracted snippets, files, and our coding as supplementary ma-
terial [25].

3.10.2 Results

Of the 100 referenced answers we analyzed, 12 were conceptual and contained no code suit-
able for copying and pasting. Three references did not exist anymore when we tried to access
the files (file or repository moved or deleted). Most references (89) included only the URL to
the answer in a comment, eight references further included the username of the author, e.g.:

/**
* Converts a double to a String in [...]

* Based on Stack Overflow answer by corsiKa at http://Stack
Overflow.com/a/5036540 [...]

**/

To introduce their reference, 62 developers used formulations like ‘code from’, ‘based on’,
or ‘adapted from’; 35 users only added the SO URL without any further comment. For the
majority of references (60), the code had been adapted (e.g., variables renamed). In two of
those cases, the comment named an additional source for the copied code beside the SO
answer. In about a quarter of cases (22), the code had been copied without any modifica-
tions. In two references, the SO answer was only included to show an alternative solution to
a problem. Further, one GH user included a link to advertise his or her own answer on SO.

About half of the references were made in regular source code comments, most of which
were placed above the copied snippet (only two were inline comments behind a statement);
41 references were JavaDoc comments for classes, methods, or class variables. It is unclear
what SO considers a proper “visual indication” that the content is from SO (required accord-
ing to the terms of service). Still, only 11 references explicitly mentioned the term ‘Stack
Overflow’ (or other variants such as ‘StackOverflow’ or ‘S.O.’) in their comment. Further,
none of the comments included a link to the author’s profile page, which was also required
according to SO’s terms of service.

Adherence to Attribution Requirements (RQ3): Most comments referencing code snip-
pets copied or adapted from Stack Overflow included only a link to the corresponding
answer without naming the author of the code. No comment included a link to the
author’s profile page and only 11 out of 97 analyzed comments explicitly named SO as
the source. In summary, none of the analyzed references fulfilled the four attribution
requirements defined by SO.

80 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

3.11 Developers’ Awareness Regarding SO’s Licensing
(RQ4)

To complement our estimation of unattributed usages of SO code snippets in GH projects,
we conducted a second online survey investigating the awareness of GH developers regard-
ing the licensing of SO content. We further used this survey to reveal false positives in our
analysis. Moreover, we contacted the authors of the ten most frequently referenced SO Java
answers, identified in phase 1 (see Section 3.5), and asked them about their view on the snip-
pets’ licensing situation.

3.11.1 Method

For the online survey, we derived a sampling frame from the GH Java repositories that con-
tained at least one file with a clone of the ten most frequently referenced SO Java snippets
identified in the first phase of our research (see Section 3.5). We retrieved the owners of those
repositories using our api-retriever tool [21], which utilizes the GitHub API. We then filtered
the GH users and organizations to only include the ones having a public email address on
their profile page. Of the 3,031 email addresses we collected, 2,165 were valid. In a first itera-
tion, we contacted all 211 organizations with valid email addresses and received 20 answers
(9.5% response rate). For the second iteration, we removed owners of forked repositories
and then contacted 528 developers, receiving 67 responses (12.7% response rate). In both
iterations, we informed participants about all matches we found in their repositories and
asked them for one randomly selected match if the code has actually been copied from SO.
We provide the questionnaire, the analysis scripts, as well as all closed-ended responses as
supplementary material [25].

To contact the authors of the ten most frequently referenced SO Java answers, we checked
their SO profile and searched for their user name on the web. We collected the email address
of two authors from their personal website and of five authors from their GH profile, but
we were not able to retrieve the email address of four authors. Please note that we have
eleven authors in total, because the answer ranked fifth actually pointed to a question and
we selected two answers for that question (see Table 3.1). The email we sent to those authors
contained three questions: One asking about their awareness regarding SO’s licensing, one
asking about an additional source for the snippet, and one asking whether they care about
attribution for the particular snippet.

3.11.2 Results

In total, 87 users responded to the online survey (11.8% response rate). Beside the survey
responses, we received many emails from participants, thanking us that we informed them
about the licensing of SO code snippets and in particular about unattributed usages in their
projects. One participant, for instance, wrote that his/her team replaced the matched snip-
pet in the repo due to the share-alike requirement of SO’s license, which they “ignored until
[we] called [their] attention.” Another participant informed us that the match was in a mir-
ror of the OpenJDK 9 Mercurial repo that was part of the GH repo we analyzed. We informed
the OpenJDK team and they replaced the code due to legal concerns. In the corresponding

3.11 Developers’ Awareness Regarding SO’s Licensing (RQ4) 81

bug description, the author points to possible legal issues and the fact that it is “not a good
practice” to copy code from SO [136].

Similar to our preliminary study (see Section 3.4), the majority of respondents (62%) re-
ported their main software development role to be software developer, but there were fewer
software architects (8%). The average age of the participants who reported their age (n = 65)
was 30.3 years (SD = 9.4) and they had an average programming experience of 11.7 years
(SD = 8.9). Again, most users answered that they use SO (80%) and GH (61%) for both pri-
vate and work-related projects; almost one third of them use GH only for private projects
(28%).

As mentioned above, we asked participants for one match that we found in their repository
whether the code has actually been copied from SO. Of the 74 participants who answered
to that question, 43 answered ‘Yes’ (58%), 20 answered ‘No’ (27%), and 11 (15%) answered
‘I don’t know’. Of the 20 participants who answered that the snippet has not been copied
from SO, seven claimed they wrote the code themselves, two claimed that a team member
wrote it, and 11 answered that they copied it from another source. We manually inspected
those matches: Eight of them (10.8%) were indeed relatively short and thus likely to be false
positives. To us, the other 12 matches looked like copies of the SO snippets. Three of them
were copies of a SO snippet that was itself a copy of another SO snippet; five matches were
also available in external sources like personal blogs (one licensed under the Apache License
2.0, the others were not licensed). Some of the participants who answered that they wrote
the code themselves may either not remember copying the code or their answer could be
affected by a social desirability bias [248]. To mitigate the former and to enable tracing the
source of code copied from SO, we recommend developers to add a comment with a link to
SO as motivated in the introduction.

We asked the participants if they knew that SO’s license requires them to attribute code
copied from posts and in particular if they knew that content on SO is licensed under CC
BY-SA 3.0. Regarding the need to attribute content copied from SO, 28 participants (32%)
were aware of it, 58 (67%) not, and one preferred not to answer. As to the specific license, the
answers were similar: 21 participants (24%) were aware of it, 65 (75%) not, and one preferred
not to answer. The attribution requirements from SO’s terms of service were even more unfa-
miliar to the participants: 11 (13%) knew them, 73 (84%) not, and 3 preferred not to answer.
Thus, we can conclude that most developers are not aware of the licensing of code published
on SO and the implications of this licensing.

With regard to the attribution practice, we asked the same questions as in the preliminary
study (see Section 3.4) and got similar results: Again, not attributing the code when coping
from Stack Overflow was a common practice (41%). This time, we asked if respondents re-
ferred to the question or a specific answer on SO in case they added a source code comment.
Twelve participants preferred not to answer this question, seven named other information
they included in the comment. Unlike the results from our quantitative analysis of attributed
usages would suggest (see Section 3.8), participants more frequently reported that they re-
ferred to an answer (30%) than to a question (13%). One reason for this could be that many
of the references to questions refer to conceptual threads on SO that do not contain code
suitable for copying and pasting.

Of the seven contacted SO authors, four answered. Three were not aware of SO’s licens-
ing when they posted their answer, one was “vaguely aware”. All respondents indicated that
they do not know any other source for the code in their answers (except for the ones listed in

82 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

Table 3.1). One author answered: “I invented it [the snippet] there and then. I would assume
any other source would be a copy from SO.” A different author wrote that his answer was “in-
formed by, but not copied directly from, other Stack Overflow posts”. Three authors responded
that they do not care about attribution for this particular content and one author answered
that he does “not really” care. The same author further noted that “it’s Stack Overflow that
collects the money for the ads. HOWEVER, if the situation would have been the same for an
article on [URL removed] which I run myself, I would care deeply about attribution.” Another
author answered that he does not have the “desire to ’own’ the information, only to share it.”
Those two comments, together with the discussion around SO’s attempt to change the li-
cense for code snippets (see Section 3.3), show that developers have diverse opinions about
the attribution requirement. Further investigating the reasons why developers do (not) care
about attribution of online code snippets is an interesting direction for future work.

Awareness of Licensing (RQ4): Most developers answering to the online survey were
not aware of the licensing of code published on SO and its implications. 75% of the
participants did not know that content on SO is licensed under CC BY-SA 3.0 and 67%
did not know that attribution is required. Not attributing the code when coping code
from SO was a common practice (41%).

3.12 Limitations and Verifiability

The main limitation of our research is the focus on Java, because the attribution practice may
differ between programming languages. Thus, the generalizability of our results to other
programming languages is limited. To answer RQ1, we used three different approaches, op-
timized for precision and always chose conservative estimates. Thus, we do not see the con-
struct validity of our research to be impaired. For the first two phases, we only considered
a relatively small sample of snippets compared to all available snippets on SO, but we still
found a considerable number of files with copies. The number of attributions was even
smaller in the third phase, where we included more snippets and only searched for exact
matches.

Another threat to validity is that both the SO snippet as well as the matched code on GH
could have a different origin. To mitigate this threat, we analyzed and described all external
sources that were linked in the SO answers. In most cases, those sources did not provide a
license, thus CC BY-SA 3.0 is the only license which applies. Another possible issue is that if
users include a license statement in their snippets on SO, they may allow a more permissive
usage without attribution. However, this was only the case in very few of the snippets we
manually investigated.

In phase 3 (Section 3.7), we used the length of the SO snippets as a proxy variable for
their originality. However, as mentioned above, there is no “international standard for orig-
inality” [103] that defines when a code snippet is protected by copyright. Thus, even with
the threshold we chose, some of the snippets may not be copyrightable. The survey (Sec-
tion 3.11) revealed that 10.8% of the matches in phase 1 were false positives due to their
short length. We addressed this issue in phase 3 with a higher threshold for the minimum
snippet length.

3.13 Related Work 83

N
ot

 re
f.

R
ef
.

Score of referenced (n=3,051) vs. not referenced (n=3.4m) SO Java answers

0 20 40 60 80 100 120 140 160 180

Figure 3.8 – Scores of Stack Overflow (SO) Java answers referenced in public GitHub (GH) projects
compared to scores of Java answers not referenced in GH projects; outliers not depicted; data re-
trieved from BigQuery GH and SO data sets (11/2017).

In phases 2 and 3, we focused on rather popular GH repositories to reduce complexity and
exclude projects that are not “engineered software projects” [192, 245]. This approach has a
very high precision, but also a relatively low recall [245]. Thus, the results of those two phases
may only be generalizable to popular projects. Nevertheless, in popular projects the impact
of licensing violations is much larger then in small personal projects.

In all phases, we focused on rather popular SO answers. Thus, our results may not be
generalizable to less popular SO answers. Our assumption was that code from unpopular
SO answers is less likely to be used in GH projects. To assess this assumption, we utilized the
BigQuery GH and SO data sets to compare the score of SO Java answers referenced in public
GH projects to the score of Java answers not referenced on GH (see Figure 3.8). Referenced
Java answers (Mdn = 25, M = 95.33, SD = 511.55) had a significantly higher score than Java
answers that were not referenced (Mdn = 1, M = 2.48, SD = 16.69) (Wilcoxon rank sum test,
W = 9,705,800,000, p-value < 2.2 ·10−16).

In phases 1 and 2, we did not check if the code on GH is older than the code on SO, which
could indicate that the code has been copied from GH or from another source into the SO
post. In phase 3, however, we filtered out matches for which the commit adding the snippet
was older than the post on SO, but this was only the case for 10 out of 1,379 matches (0.7%).

To enable other researcher to verify our results, we provide all analysis scripts and data as
supplementary material [25]. The supplementary material further includes instructions on
how to apply the scripts to the data.

3.13 Related Work

In the following, we summarize related work from different research areas, highlight connec-
tions to our study, and point to directions for future work.

3.13.1 Stack Overflow and GitHub

Over the past years, there have been various research papers on leveraging knowledge from
SO, e.g., to support developers by automating the search [74, 257] or by augmenting API doc-

84 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

umentation [335]. Moreover, different tools have been developed to help developers finding
code examples on the web [64, 373]. However, researchers rarely mentioned the complex
licensing and copyright situation when building tools to support code reuse from the web,
and in particular from SO. Since our study indicates that many developers are not aware of
SO’s license and its implications (see Section 3.11), future tools should inform developers
about this aspect.

Regarding the populations of SO and GH users, studies described properties such as gen-
der [346], age [242], and geographic location [282]. Wang et al. [355] analyzed the asking and
answering behavior of developers on SO and found that most developers only answer or ask
one question and only 8% answer more than 5 questions. Bosu et al. analyzed how repu-
tation is build on SO and provide recommendations for contributors [62]. Xia et al. found
that it is common for developers to search for reusable code snippets on the web [368],
which is in line with Sojer and Henkel’s results from an earlier study [298]: In 2009, they
conducted an online survey with 869 software developers to investigate ad-hoc reuse of “in-
ternet code” [298]. Even at that time, about one year after SO’s launch, reuse of such code
from internet sources was an essential part of developers’ work. Our study has shown that it
is common for developers to copy and paste code from SO into their projects without pro-
viding the required attribution. Moreover, we found that developers are not aware of SO’s
license. An interesting direction for future work would be to analyze if developers’ usage of
code snippets from the web, particularly from SO, decreases with an increase of awareness
and knowledge about when code is copyrightable and which implications certain licenses
have.

Regarding code snippets on SO, Yang et al. found that Python and JavaScript snippets are
more usable in terms of parsability, compilability and runnability, compared to Java and
C# [369]. Yang et al. analyzed code clones between Python snippets from SO and Python
projects on GH using a token-based clone detector and found a considerable number of
non-trivial clones [370]. Abdalkareem et al. found that reusing code from SO may have a
negative impact on code quality [1]. Other studies aimed at identifying API usage in SO
code snippets [324], describing characteristics of effective code examples [247], investigating
whether SO code snippets are self-explanatory [336], or analyzing the impact of copied SO
code snippet on application security [2, 140]. Recently, Zhang et al. analyzed potential API
usage violations in SO posts and found that, of the 217,818 analyzed Java and Android SO
posts, 31% may contain potential API usage violations, which could lead to program crashes
or resource leaks [374].

There has also been work on the interplay between user activity on SO and GH [19, 294,
347]. In particular, Vasilescu et al. showed that active GH committers ask fewer questions
and provide more answers than others [347]. With our study, we add a new aspect to this
interplay, namely how code from SO is used and attributed in GH projects.

To describe the topics of SO questions and answers, different methods like manual analy-
sis [337] and Latent Dirichlet Allocation (LDA) [8, 355] have been used. Automatically iden-
tifying high-quality questions and answers has been another research direction, where met-
rics based on the number of edits on a question [371], the author’s popularity [258], and code
readability [117] yielded good results. A direction for future work is to investigate whether
those high-quality questions and answers are actually referenced or used more often in GH
projects.

3.14 Conclusion 85

3.13.2 Licensing and Code Clones

German and Hassan point to the license mismatch problem, that is combining software
components with possibly conflicting licenses [146]. As described above, such a license con-
flict may arise when developers copy non-trivial code snippets from SO into their projects,
because SO’s license requires derivative work to use a compatible license. An et al. investi-
gated whether developers respect license terms when reusing code from SO posts in a sam-
ple of 399 Android projects and found many potential license violations [13]. They consid-
ered a project to violate SO’s license if it, among other factors, did not “use the CC BY-SA 3.0
or its later versions.” However, they did not consider the compatibility of CC BY-SA 4.0 and
GPL 3.0 (see Section 3.9). Moreover, none of the files they analyzed contained a reference “to
the corresponding Stack Overflow post.” It is unclear whether the authors also considered
links to the corresponding question. Nevertheless, these results do not contradict our esti-
mation that in at most one quarter of the cases, code copied from SO is attributed as required
(see Section 3.14).

A reason for license violations may be developers struggling to understand the interac-
tion of open source licenses. Almeida et al. conducted an online survey with 375 software
developers and found that developers struggled to understand licensing scenarios involving
multiple licenses [9], as it may be the case when developers want to use SO code in their
projects. As motivated above, the situation can even be more complex when code on SO is
also available on other websites. SO could address this issue by making the licensing of the
content more visible on their website, and by integrating a feature that allows SO authors to
easily provide an additional (more permissive) license when posting code on SO.

German et al. analyzed how code siblings, i.e., code clones that evolve in a different system
than the original code, flow between systems with different licenses [147]; Gharehyazie et al.
and Lopes et al. found that cross-project code reuse is common on GH [148, 214]. Tracing the
flow of siblings between GH projects, posts on SO, and external sources is another possible
direction for future work.

Two fields related to our study are source code plagiarism detection [202] and code clone
detection [275], which both rely on determining the similarity of code fragments. One of the
most often cited tools for code plagiarism detection is JPlag [72, 261], which uses the same
algorithm to determine token string similarity like CPD [222], the code clone detector we
used in the second phase of our study. There has been recent work on scaling the detection
of code clones to large source code corpora [72, 264, 277] that we can build upon to be able
to search for copies of all non-trivial SO code snippets in all public GH projects.

3.14 Conclusion

The main goal of our research on Stack Overflow (SO) code snippets in GitHub (GH) projects
was to quantify the amount of unattributed usages. In a preliminary survey, half of the partic-
ipants answered that they did not attribute snippets copied from SO. However, our quantita-
tive analysis shows that, for Java, at most a quarter of the usages of SO snippets are attributed.
We used three different approaches to find unattributed usages, always chose conservative
estimates, and tried to remove as many false positive results as possible. In the first phase,
we searched for unattributed usages of the snippets from the ten most frequently referenced
SO Java answers in all Java files in the BigQuery GH data set and found that only 23% of the

86 3 Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects

copies had been attributed. In the second phase, we utilized the token-based code clone de-
tector CPD to find clones of a sample of 222 SO Java snippets in a sample of 2,313 popular GH
Java projects and found that only 24% of the snippet clones included a reference to SO. In the
last phase, we searched for exact copies of 29,370 SO Java snippets in 64,281 GH projects and
found that only 8% of the copies were attributed. Thus, we think that one quarter is a rea-
sonable upper bound for the ratio of attributed usages. The higher ratio in the preliminary
survey could be explained with a social desirability bias [248] affecting the respondents.

Our preliminary survey yielded that, if content from SO is attributed, developers usually
add a link to the question or answer in a source code comment. We analyzed how often these
URLs are present in Java files and found that developers more often refer to questions, i.e.,
the whole thread, than to specific answers. Adding a reference to a specific answer instead of
the question could help to increase maintainability. For example, one could later on check
whether this answer is still the accepted one or whether a bug fix has been posted. However,
there may be cases when the question is more appropriate, e.g., when a developer wants to
refer to a controversially discussed topic or a conceptual issue. Analyzing when developers
link to questions and when to answers is a direction for future work.

In the three phases of our research, between 3.3% and 11.9% of the analyzed reposito-
ries contained a file with a reference to SO. The popular projects from phase two were more
likely to contain a reference than the broader samples of phases 1 and 3. Depending on the
project’s license, the share-alike requirement of CC BY-SA 3.0 may lead to licensing issues for
those projects. Our second survey has shown that many developers admit copying code from
SO without attribution and are not aware of the licensing and its implications. Moreover, we
found that at most 1.8% of the GH projects with copies of SO code snippets attributed the
copy and had a license that would allow a CC BY-SA 3.0-compatible usage of the SO content.
The discussions on SO about a new code license show that developers care about this topic,
yet many developers do not attribute code they copy from SO posts. A direction for future
research is to investigate this dichotomy.

Another direction is to automate and scale the extraction of copyable snippets form SO
and the detection of unattributed usages in GH projects. The ‘reverse engineering’ of the
missing link to SO can help developers mitigating possible maintenance and legal issues, as
motivated in the introduction of this chapter. As a first step, we build a data set with the
extracted version history of all SO code snippets (see Chapter 6). We plan to use this data
set to identify buggy revisions, and then search for copies of those revisions to warn devel-
opers who copied buggy code. We also want to expand our analysis to other programming
languages and further investigate the relations between code snippets on SO, their copies on
GH, and external sources. Our long-term goal is to provide better tool support to help devel-
opers maintaining code copied from online resources such as SO. Such a tool could inform
developers when a copied snippet changes in the original resources, or in case of SO, when
a new answer gets accepted or upvoted.

4
Chapter 4

Expertise Development:
Towards a Theory of Software
Development Expertise

“There is nothing so practical as a good theory.”

—Kurt Lewin, Problems of Research in Social Psychology (1951)

Software development includes diverse tasks such as implementing new features, analyz-
ing requirements, and fixing bugs. Being an expert in those tasks requires a certain set of
skills, knowledge, and experience. Several studies investigated individual aspects of soft-
ware development expertise, but what is missing is a comprehensive theory. In this chapter,
we present a first conceptual theory of software development expertise that is grounded in
data from a mixed-methods survey with 335 software developers and in literature on exper-
tise and expert performance. Our theory currently focuses on programming, but already
provides valuable insights for researchers, developers, and employers. The theory describes
important properties of software development expertise and which factors foster or hinder
its formation, including how developers’ performance may decline over time. Moreover, our
quantitative results show that developers’ expertise self-assessments are context-dependent
and that experience is not necessarily related to expertise.

The content of this chapter is based on a peer-reviewed publication [32].

Contributions:

• A first conceptual theory of software development expertise grounded in a survey with
335 software developers and in literature on expertise and expert performance.

• Quantitative results that point to the context-dependence of software developers’ ex-
pertise self-assessments.

• A theory-building approach involving inductive and deductive steps that other (soft-
ware engineering) researchers can apply or adapt.

4.1 Introduction

An expert is, according to Merriam-Webster, someone “having or showing special skill or
knowledge” because of what s/he “has been taught or [...] experienced” [233]. K. Anders
Ericsson, a famous psychologist and expertise researcher, defines expertise as “the charac-
teristics, skills, and knowledge that distinguish experts from novices and less experienced
people” [129]. For some areas, such as playing chess, there exist representative tasks and
objective criteria for identifying experts [129]. In software development, however, it is more
difficult to find objective measures for quantifying expert performance [239]. Bergersen et al.
proposed an instrument to measure programming skill [55], but their approach may suffer

88 4 Expertise Development: Towards a Theory of Software Development Expertise

from learning effects because it is based on a fixed set of programming tasks. Furthermore,
aside from programming, software development involves many other tasks such as require-
ments engineering, testing, and debugging [204, 295, 301], in which a software development
expert is expected to be good.

In the past, researchers investigated certain aspects of software development expertise
(SDExp) such as the influence of programming experience [292], desired attributes of soft-
ware engineers [209], or the time it takes for developers to become “fluent” in a software
project [375]. However, there is currently no theory combining those individual aspects.
Such a theory could help structuring existing knowledge about SDExp in a concise and pre-
cise way and hence facilitate its communication [175]. Despite many arguments in favor of
developing and using theories [178, 195, 265, 343], theory-driven research is not very com-
mon in software engineering [296].

With this chapter and the corresponding research paper [32], we contribute a theory that
describes central properties of SDExp and important factors influencing its formation. Our
goal was to develop a process theory, that is a theory intended to explain and understand
“how an entity changes and develops” over time [265]. In our theory, the entities are indi-
vidual software developers working on different software development tasks, with the long-
term goal of becoming experts in those tasks. This fits the definition of a teleological process
theory, where an entity “constructs an envisioned end state, takes action to reach it and mon-
itors the progress” [344]. The theory is grounded in data from a mixed-methods survey with
335 participants and in literature on expertise and expert performance. Our expertise model
is task-specific, but includes the notion of transferable knowledge and experience from re-
lated fields or tasks. On a conceptual level, the theory focuses on factors influencing the
formation of SDExp over time. It is a first step towards our long-term goal to build a vari-
ance theory [203, 221] to be able to explain and predict why and when a software developer
reaches a certain level of expertise [170, 265].

The theory can help researchers, software developers as well as employers. Researchers can
use it to design studies related to expertise and expert performance, and in particular to re-
flect on the complex relationship between experience and expertise (see Section 4.6), which
is relevant for many self-report studies. Software developers can learn which properties are
distinctive for experts in their field, which behaviors may lead to becoming a better software
developer, and which contextual factors could affect expertise development. If they are al-
ready “senior”, they can learn what other developers expect from good mentors or which ef-
fects age-related performance decline may have on them. Finally, employers can learn what
typical reasons for demotivation among their employees are, hindering developers to im-
prove, and how they can build a work environment supporting expertise development of
their staff.

4.2 Research Design

To describe our research design, we follow Tashakkori and Teddlie’s methodology [326]. We
designed a sequential mixed model study (type VIII) with three phases (see Figure 4.1). We
started with an open online survey, which we sent out to a random sample of GitHub de-
velopers (S1) to build a preliminary grounded theory of SDExp (see Section 4.3). In a second
phase, we combined the preliminary grounded theory from the first phase with existing liter-
ature on expertise and expert performance. The result of this combination of inductive and

4.3 Phase 1: Grounded Theory 89

Table 4.1 – Demographics of participants in samples S1-S3: Work time dedicated to software devel-
opment; GE : general experience (years), GRsem : general expertise rating (semantic differential from
1=novice to 6=expert), JE : Java experience (years), JRsem : Java expertise rating.

Sample
Age Work Time (%) GE (years) JE (years) GRsem (1-6) JRsem (1-6)

n
M SD Mdn M SD Mdn M Mdn M Mdn M Mdn M Mdn

S1 30.4 6.4 29.0 70.2 26.3 80 11.8 10.0 5.0 3.5 4.8 5.0 3.6 4.0 122
S2 31.6 10.0 30.0 69.5 26.4 80 12.7 10.0 7.6 6.0 4.8 5.0 4.4 5.0 127
S3 59.9 4.9 59.0 68.2 32.0 80 34.1 35.0 5.7 1.5 5.3 5.0 2.8 2.0 86

deductive methods [170] was a preliminary conceptional theory of SDExp (see Section 4.4).
In a third phase, we designed a focused questionnaire to collect data for building a revised
conceptual theory that describes certain concepts of the preliminary theory in more detail.
We sent the focused questionnaire to two additional samples of software developers (S2 and
S3). Like in the first phase, we analyzed the qualitative data from open-ended questions, this
time mapping the emerging codes and categories to the preliminary conceptual theory.

To complement our qualitative analysis, we conducted a quantitative analysis investigat-
ing developers’ self-assessment of programming expertise and its relation to experience (see
Section 4.6). Please note that we planned the general research design, in particular the tran-
sitions between inductive and deductive steps [203], before collecting the data. We provide
all questionnaires, coding schemes, and all non-confidential survey responses as supple-
mentary material [30].

4.3 Phase 1: Grounded Theory

The goal of the first phase of our research was to build a grounded theory (GT) of SDExp. The
GT methodology, introduced by Glaser and Strauss in 1967 [154], is an approach to generate
theory from qualitative data. Since its introduction, different approaches evolved: Glaser’s
school emphasized the inductive nature of GT, while Strauss and Corbin focused on system-
atic strategies and verification [81, 98]. The third and most recent school of GT, called con-
structivist GT, tried to find a middle ground between the two diverging schools by building
upon the flexibility of Glaser and Strauss’s original approach, combining it with construc-
tivist epistemology [81].

All three schools rely on the process of coding that assigns “summative, salient, essence-
capturing” words or phrases to portions of the unstructured data [278]. Those codes are iter-
atively and continuously compared, aggregated, and structured into higher levels of abstrac-
tions, the categories and concepts. This iterative process is called constant comparison. We
followed Charmaz’s constructivist approach, dividing the analysis process into three main
phases: (1) initial coding, (2) focused coding and categorizing, and (3) theory building. The
last step tries to draw connections between the abstract concepts that emerged from the data
during the first two phases, generating a unifying theory. An important aspect of GT is that
the abstractions can always be traced back to the raw data (grounding). In the first step, the
initial coding, it is important to remain open and to stick closely to the data [81]. Glaser even
suggests not to do a literature review before conducting GT research [224], which is a rather
extreme and debatable position [328]. We decided to limited our literature review in the first
phase to software engineering literature and postponed the integration of results from psy-

90 4 Expertise Development: Towards a Theory of Software Development Expertise

Figure 4.1 – Research design

chology literature to the second phase of our research. The main research questions guiding
this phase were:

RQ1 Which characteristics do developers assign to novices and which to experts?

RQ2 Which challenges do developers face in their daily work?

Our main area of interest were the characteristics developers assign to novices and experts,
captured by RQ1. However, as software development experts are expected to master com-
plex tasks efficiently [375], we also added RQ2, asking about challenges developers face in
their daily work to identify such tasks.

4.3.1 Survey Design and Sampling

To answer our research questions, we designed an online questionnaire, which we sent to a
random sample of software developers. Our goal was to start open-minded, thus we pri-
marily relied on open-ended questions for data collection. The questionnaire contained
seven open-ended and four closed-ended questions related to SDExp plus seven demo-
graphic questions. To prevent too broad and general answers, we focused on expertise in
one particular programming language. We chose Java, because at the time we designed
the survey (October 2015) it was, according to various rankings, the most popular program-
ming language [76, 331]. We analyzed all open-ended questions separately using Charmaz’s
grounded theory approach, performing all three constructivist GT phases (see above) on the
survey answers. After deductively revising the resulting GT (see Section 4.4), we used theo-
retical sampling to collect more data on certain concepts and again performed those three
GT phases, constantly comparing the new data to the data from the first iteration (see Sec-
tion 4.5). We used the closed-ended questions to describe the samples and to analyze the
relation between experience and (self-assessed) expertise (see Section 4.6).

Qualitative researchers often rely on convenience sampling for selecting their participants
[29, 243]. However, we wanted to reach a diverse sample of novices and experts, which is hard
to achieve with this sampling approach. Therefore, we drew our first sample randomly from
all users who were active on both Stack Overflow (SO) and GitHub (GH) between January 1,
2014 and October 1, 2015. Both platforms are very popular among software developers and
for both of them, demographic information about users is publicly available [347]. Another
motivation for this sampling strategy was to be later able to correlate the self-assessments of
developers with their activity on GH and SO.

We derived our sampling frame from the data dumps provided by Stack Exchange (August
18, 2015) [306] and GHTorrent (September 25, 2015) [164]. To match users on both plat-

4.3 Phase 1: Grounded Theory 91

forms, we followed the approach of Vasilescu et al. [347], utilizing the MD5 hash value of
users’ email addresses. For the SO users, we retrieved the email hashes from an old data
dump released September 10, 2013 where this information was directly available for all users.
Further, for users who set a Gravatar URL in their profile, we extracted the email hash from
there. In the end, we were able to retrieve the email hashes for 3.8 million SO users (75% of
all users in the 2015 dataset). In the GHTorrent data dump, the email address was available
for 6.6 million GH users (69% of all users in the dataset). To identify active users, we checked
if they contributed to a question (asked, answered, or commented) on SO and committed to
a project on GH since January 1, 2014. This resulted in a sampling frame with 71,400 unique
users from which we drew a random sample of 1,000 users. In the following, S1 denotes this
sample.

The first iteration of the questionnaire was online from October 13, 2015 until Novem-
ber 11, 2015. Of the 1,000 contacted users, 122 responded (12.2% response rate). Of the
122 respondents, 115 identified themselves as male, one as female and six did not provide
their gender. The majority of respondents (67.2%) reported their main software develop-
ment role to be software developer, the second-largest group were software architects (13.9%).
Most participants answered from Europe (49.2%) and North America (37.7%). Further demo-
graphic information can be found in Table 4.1.

4.3.2 Terminology

According to Sjøberg et al., the building blocks of theories are its core entities, the constructs,
the relationships between these constructs, and the scope conditions that delineate a theory’s
application area [296]. To have a consistent terminology across this chapter, we use the term
concepts instead of constructs for the central elements of the presented theories.

The scope of all theories we built, including the GT, was to describe what constitutes SD-
Exp and which factors influence its formation, focusing on individual developers. In the
second phase (see Section 4.4), we added a task-specific notion of expertise and then re-
vised the resulting preliminary theory in a second inductive step (see Section 4.5) to focus
on programming-related tasks.

4.3.3 Concepts

Figure 4.2 shows the high-level concepts and relationships of the grounded theory that re-
sulted from our qualitative analysis of all open-ended answers in S1. Most answers con-
nected to RQ1, that is characteristics of experts and novices, were either related to having
a certain degree of knowledge in different areas or a certain amount or quality of experi-
ence. We marked those concepts that constitute SDExp in gray color. The factors contribut-
ing to the formation of SDExp, and the results of having a certain degree of SDExp, have a
white background. Participants described typical behaviors, character traits, and skills of
experts. Many answers mentioned properties that distinguish source code written by experts
from source code written by novices. In our notion, the quality of source code is the result
of having a certain level of knowledge and experience and thus a measure of expert perfor-
mance. When asked about RQ2, that is challenges faced in their daily work, participants
often named time-pressure and unrealistic demands by managers or customers. Generally,

92 4 Expertise Development: Towards a Theory of Software Development Expertise

Figure 4.2 – High-level concepts/relationships of GT (phase 1).

most answers related to challenges were not technical, but referred to human factors. In the
GT, we summarized these factors as work context.

In the following, we present the most frequent sub-categories of the concepts mentioned
above. The concepts are in bold font, the (sub-)categories are in SMALL CAPITALS. We provide
a full list of all categories and subcategories as supplementary material [30].

Experience Most statements that we assigned to this concept referred to the QUANTITY of
software development experience (e.g., in terms of years), but some also described its QUAL-
ITY. Examples for the latter include having built “everything from small projects to enterprise
projects” or “[experience] with many codebases”. In particular, participants considered PRO-
FESSIONAL EXPERIENCE, e.g., having “shipped a significant amount of code to production or
to a customer” and working on SHARED CODE to be important factors.

Knowledge Since we specifically asked for Java, many answers were LANGUAGE-SPECIFIC

or referred to certain Java FRAMEWORKS. Experts were described as having an “intimate
knowledge of the design and philosophy of the language” (DEPTH OF KNOWLEDGE), which
includes knowing “the shortcomings of the language [...] or the implementation [...].” An-
swers also indicated the importance of having a BROAD KNOWLEDGE about algorithms, data
structures, or different programming paradigms to bring “the wisdom of [...] other philoso-
phies into Java”.

Quality of Source Code Regarding the quality of source code, participants named several
properties that source code of experts should possess: It should be WELL-STRUCTURED and
READABLE, contain “comments when necessary”, be “optimized” in terms of PERFORMANCE

and sustainable in terms of MAINTAINABILITY. One participant summarized the code that
experts write as follows: “Every one can write Java code which a machine can read and pro-
cess but the key lies in writing concise and understandable code which [...] people who have
never used that piece of code before [can read].”

Behavior, Character Traits, and Skills For this concept, the most common category was
COMMUNICATION SKILLS. Experts should be willing to “share [their] knowledge with other
developers”, but they should also know when to “ask for help”. Some participants mentioned
the role of experts as teachers, e.g. to train “younger developers”. Another category was
(SELF-)REFLECTION, meaning reflecting on problems (“thinks before coding”) as well as on
own behavior (being “aware [of] what kind of mistakes he can make”). Further, participants

4.4 Phase 2: Preliminary Conceptual Theory 93

named PROBLEM-SOLVING SKILLS and attributes that we summarized in a category named
BEING FAST.

Work Context Many participants mentioned problems related to PEOPLE affecting their
work. One participant put it this way: “Computers are easy. People are hard.” Salient were
the comments about constant TIME PRESSURE, often caused by customers or the manage-
ment. Respondents found it challenging to maintain “quality despite pressure to just make it
work”. One participant remarked that “sometimes non-software managers think of software
like manufacturing: If 1 person works 400 parts in a day 10 should work 4000. But in software
development, that analogy breaks down.” There were also comments about team issues like
“getting a big team of developers adopt common standards of coding, designing and unit
testing.” Participants also complained about the lack of well-defined REQUIREMENTS and
the importance of good COMMUNICATION: “[...] User’s cannot communicate what they want.
[...] Project managers who talk to the users don’t understand the implications by the require-
ments and mostly don’t know enough of the business process the user lives every day. Hence,
he cannot communicate the problem to the development team.”

4.3.4 Relationships

After structuring participants’ answers into concepts, categories, and sub-categories, we
looked at the answers again, trying to find meaningful relationships. The result of this pro-
cess is depicted in Figure 4.2. In our notion, certain forms of behavior, and an individual de-
veloper’s character traits and general skills make it more likely to gain the level of knowledge
and experience to be considered an expert in software development, which then manifests
itself in the quality of source code the developer creates. However, gained knowledge and
experience also affect an individual’s behavior and shapes other skills. Moreover, the work
context, meaning, for example, the office, colleagues, customers, or the application domain
of a project, influence the behavior and thus the formation of knowledge and experience.

Phase 1 (Grounded Theory): The grounded theory describes SDExp as a combination
of a certain quantity and quality of knowledge and experience, both general and for a
particular programming language. The work context, behavior, character traits, and
skills influence the formation of expertise, which can be observed when experts write
well-structured, readable, and maintainable source code.

4.4 Phase 2: Preliminary Conceptual Theory

As described in our research design, the next step after inductively deriving a preliminary
GT from the responses of the participants in our first sample was to deductively embed this
GT in existing literature on expertise and expert performance. To this end, we reviewed psy-
chology literature. Our main source was The Cambridge Handbook of Expertise and Expert
Performance [133] including the referenced literature. This handbook is the first [133], and to
the best of our knowledge most comprehensive, book summarizing scientific knowledge on
expertise and expert performance. The result of this deductive step was a task-specific con-
ceptual theory of expertise development that is compatible with the grounded theory from

94 4 Expertise Development: Towards a Theory of Software Development Expertise

Figure 4.3 – High-level concepts and relationships of preliminary conceptual theory (phase 2).

the first phase. Figure 4.3 shows our preliminary conceptual theory, which we are going to
present in this section.

Generally, process theories focus on events and try to find patterns among them, leading to
a certain outcome—variance theories describe a certain outcome as a relationship between
dependent and independent variables [203]. The process that we describe with our concep-
tual theory is the formation of SDExp, that is the path of an individual software development
novice towards becoming an expert. This path consists of gradual improvements with many
corrections and repetitions [130], therefore we do not describe discrete steps like, for exam-
ple, the 5-stage Dreyfus model of skill acquisition (see Section 4.6.2). Instead, we focus on the
repetition of individual tasks. In phase 3, we extended our conceptual theory with a focus on
programming-related tasks (see Section 4.5), but the general structure is flexible enough to
be extended towards other software development tasks as well [204, 295, 301]. Even with a
focus on programming expertise, the distinction between tasks is important. For example,
an excellent Java programmer is not automatically an excellent Haskell programmer. More-
over, programming itself includes diverse tasks, such as implementing new features or fixing
bugs, with a varying centrality and difficulty [375].

4.4.1 Concepts

In the following, we will describe the concepts we deductively integrated into our grounded
theory using literature on expertise and expert performance.

Individual Differences and Behavior We split the GT concept behavior, character traits,
and skills into individual differences and behavior. We modeled behavior as being relative
to a certain task and as being influenced by individual differences [244] such as mental
abilities, personality, and motivation, which have long been considered essential for gen-
eral [75, 131, 173] and programming performance [105]. Even if the general intelligence is
not a valid predictor for attaining expert performance in a domain [129], improvements are
constrained by an individual’s cognitive capacities [130]. Especially at the early stages of skill
acquisition, general intelligence is in fact an important factor [199]. It is also known that

4.4 Phase 2: Preliminary Conceptual Theory 95

mental abilities start to decline at a certain age [199]. Acquiring expertise is not exclusively
a cognitive matter” [182]—developers’ personality and motivation influence behaviors that
may or may not lead to improvements of expertise [182, 302]. Generally, the term skill is
defined as “an ability or proficiency acquired through training and practice” [12]. Thus, ac-
cording to that definition, being a good software developer is also a skill. However, in the
scope of our theory, we limit the term skill to fundamental skills such as communication and
social skills [12].

Task Context In the GT, we described how the work context, including team members,
managers, and customers, can influence developers’ behavior. In the conceptual theory,
we considered this context to be task-specific (e.g., communication with customers is more
likely to happen during requirements analysis and communication with colleagues is more
likely to happen when refactoring an existing module). The task context captures all organi-
zational, social [237], and technical constraints that are relevant for the task at hand.

Knowledge and Experience Knowledge can be defined as a “permanent structure of in-
formation stored in memory” [270]. Some researchers consider a developer’s knowledge
base as the most important aspect affecting their performance [105]. Studies with software
developers suggest that “the knowledge base of experts is highly language dependent”, but
experts also have “abstract, transferable knowledge and skills” [301]. We modeled this aspect
in our theory by dividing the central concepts knowledge and experience from the GT into
a task-specific and a general part. This is a simplification of our model, because the rele-
vance of knowledge and experience is rather a continuum than dichotomous states [358].
However, Shneiderman and Mayer, who developed a behavioral model of software develop-
ment, used a similar differentiation between general (“semantic”) and specific (“syntactical”)
knowledge [291]. General knowledge and experience does not only refer to technical aspects
(e.g., low-level computer architecture) or general concepts (e.g., design patterns), but also to
knowledge about and experience with successful strategies [196, 299, 300].

Performance, Education, and Monitoring As mentioned in the introduction, it may be
difficult to find objective measures for quantifying expert performance in software develop-
ment. However, there exist many metrics and measures that can be evaluated regarding their
validity and reliability for measuring expert performance. Respondents from the first sam-
ple mentioned different characteristics of experts’ source code, but also the time it takes to
develop a solution. This is related to the area of program comprehension where task cor-
rectness and response time are two important measures [121]. At this point, our goal is not
to treat performance as a dependent variable that we try to explain for individual tasks, we
rather consider different performance monitoring approaches to be a means for feedback
and self-reflection. For our long-term goal to build a variance theory for explaining and pre-
dicting the development of expertise, it will be more important to be able to accurately mea-
sure developers’ performance. Education and mentoring help building knowledge and thus
contribute to the development of expertise [134]. Having a teacher or mentor is particu-
larly important for deliberate practice [132, 134], which is a central aspect of our theory (see
below).

96 4 Expertise Development: Towards a Theory of Software Development Expertise

4.4.2 Relationships

The relationships in our theory are intentionally labeled with rather generic terms such as
“affects” or “generates”, because more research is needed to investigate them. Nevertheless,
we want to point out two central groups of relationships: deliberate practice and the influ-
ence of monitoring, feedback, and self-reflection.

Deliberate Practice Having more experience with a task does not automatically lead to
better performance [132]. Research has shown that once an acceptable level of performance
has been attained, additional “common” experience has only a negligible effect, in many do-
mains the performance even decreases over time [137]. The length of experience has been
found to be only a weak correlate of job performance after the first two years [130]—what
matters is the quality of the experience. According to Ericsson et al., expert performance can
be explained with “prolonged efforts to improve performance while negotiating motivational
and external constraints” [132]. For them, deliberate practice, meaning activities and experi-
ences that are targeted at improving the own performance, are needed to become an expert.
For software development, Zhou and Mockus found that developers can improve their per-
formance over time by continuously increasing the difficulty and centrality of development
tasks [375], which is in line with the concept of deliberate practice. Traditionally, research
on deliberate practice concentrated on acquired knowledge and experience to explain ex-
pert performance [75, 131, 173]. However, later studies have shown that deliberate practice
is necessary, but not sufficient, to achieve high levels of expert performance [75]—individual
differences play an important role [173] (see above).

Monitoring, Feedback, and Self-reflection A central aspect of deliberate practice is self-
monitoring one’s own performance, and getting feedback, for example from a teacher or
coach [130]. Generally, such feedback helps individuals to monitor their progress towards
goal achievement [213]. Moreover, as Tourish and Hargie note, “[t]he more channels of ac-
curate and helpful feedback we have access to, the better we are likely to perform.” [333].
In areas like chess or physics, studies have shown that experts have more accurate self-
monitoring skills than novices [85]. In our model, the feedback relation is connected to the
concept task context as we assumed that feedback for a software developer most likely comes
from co-workers or supervisors. To close the cycle, monitoring and self-reflection influence a
developer’s motivation and consequently his/her behavior. In the revised conceptual theory
(see Section 4.5), we also included mentors in this feedback cycle.

Phase 2 (Preliminary Conceptual Theory): The preliminary conceptual theory builds
upon the grounded theory. Among other changes, the theory introduces a task-specific
view on expertise, separates individual differences and behavior, and embeds the con-
cept of deliberate practice, including the relationships monitoring, feedback, and self-
reflection. Moreover, instead of focusing on source code, it introduces the general con-
cept of performance as a result of having a certain level of expertise.

4.5 Phase 3: Revised Conceptual Theory 97

4.5 Phase 3: Revised Conceptual Theory

The goal of the third and last phase was to validate the general design of our theory and to
collect more data about certain concepts, in particular the ones related to deliberate prac-
tice. Our focus was on programming-related tasks, but the theory can as well be extended
and operationalized for other software development tasks in future work.

4.5.1 Survey Design

We revised the open questionnaire from phase 1 to focus on specific concepts, in fact most
questions of the resulting focused questionnaire were directly related to individual concepts
of the preliminary theory. We then conducted theoretical sampling to “elaborate and refine
the categories constituting [our] theory” [81], surveying two additional samples of software
developers. We tried to reach active Java developers (S2) and very experienced developers
(S3). We targeted Java developers, because we wanted to compare participants’ general ex-
perience and expertise with their experience and expertise in one particular programming
language (see Section 4.6). We further targeted experienced developers, because in the first
phase especially this group of participants provided well-elaborated and insightful answers.
Please note that the goal of theoretical sampling is “conceptual and theoretical develop-
ment”, not “increasing the [...] generalizability” of results [81]. We revised and extended
our two initial research questions to adjust them to our preliminary conceptual theory:

Individual Differences and Behavior

RQ1.1 Which characteristics do developers assign to software development experts?

RQ1.2 Which character traits or behaviors are supportive for becoming a software devel-
opment experts?

RQ1.3 What are typical reasons for a decline of programming performance over time?

RQ1.4 Which tasks should a software development experts be good at?

Task Context and Motivation

RQ2.1 What can employers do to facilitate continuous development of their employees’
software development skills?

RQ2.2 What motivates developers?

Deliberate Practice

RQ3.1 How do developers monitor their software development activities?

RQ3.2 Whom do developers consider a “mentor” in becoming a better software devel-
oper?

Beside asking for typical character traits of experts (RQ1.1), we now asked in particular
for traits that are supportive for becoming an expert (RQ1.2) to collect more data on fac-
tors influencing the formation of SDExp. Due to the importance of mental abilities in expert
development and the fact that they start to decline at a certain age [199], we asked about
situations where developers’ performance declined over time (RQ1.3). Since our theory is

98 4 Expertise Development: Towards a Theory of Software Development Expertise

Figu
re

4.4
–

H
igh

-levelco
n

cep
ts/catego

ries
o

frevised
co

n
cep

tu
alth

eo
ry

(p
h

ase
3);asterisk

refers
to

d
escrip

tio
n

s
in

th
e

text.

4.5 Phase 3: Revised Conceptual Theory 99

task-specific, we also asked for tasks that an expert should be good at (RQ1.4). When we
asked participants in S1 for challenges in their daily work (RQ2), they often referred to their
work context and in particular to people-related issues. The work context may also influence
developers’ motivation, which plays an important role in expertise development (see Sec-
tion 4.4.1). Thus, we changed RQ2 to focus more on those two aspects (RQ2.1 and RQ2.2).
Since we deductively included the concept of deliberate practice in our theory, we added
questions about monitoring (RQ3.1) and mentoring (RQ3.2), which are important aspects
of deliberate practice. We provide the survey questions corresponding to the above research
questions as supplementary material [30].

During the analysis of samples S2 and S3, we build upon our conceptual theory, mapping
the emerging codes and categories to the existing theory. This procedure is similar to what
Saldaña calls elaborative coding [278]. Figure 4.4 depicts the high-level concepts and cate-
gories of our revised conceptual theory. Some (sub-)categories are not shown in the figure,
but are described in this section. We provide a full list of all categories as supplementary
material [30].

4.5.2 Sampling

As mentioned in the previous section, our preliminary conceptual theory guided the sam-
pling (theoretical sampling [81, 243]). Our goal was to reach active Java developers (S2) as
well as very experienced developers (S3). We retrieved the sampling frame for those samples
from the Stack Exchange Data Dump [307] released January 1, 2016 and the GHTorrent data
dump [164] released February 16, 2016.

For the Java sample (S2), we started by identifying active GH projects. We first filtered out
the projects that were not deleted, not a fork, had at least two contributing users, and had at
least 10 commits. Then, to select non-trivial Java projects, we only considered projects with
at least 300 kB of Java source code (sum of file sizes of all Java files in the project). From the re-
sulting 22,787 Java GH projects, we created a sampling frame with all users who contributed
(committed or merged a pull request) to one of the selected projects and who pushed at least
10 commits between January 1, 2015 and December 31, 2015. From the 44,138 users who sat-
isfied the above criteria, we contacted the ones with a public email address on their profile
page (n = 1,573).

With the third sample (S3), we wanted to reach very experienced users. Therefore, we
again combined data from SO and GH. We used the age of a developer as a proxy variable
for their experience. For GH users, the age was not available, but 11% of the users in the
SO dump provided their age. To select experienced users, we filtered all SO users with age
≥ 55 years and ≤ 80 years and matched them with a GH account using the hash value of their
email address. This resulted in a sample of 877 experienced users.

The focused questionnaire we used in the third phase contained nine open-ended and
nine closed-ended questions, three of them only visible depending on previous answers,
plus seven demographic questions. The full questionnaire is available as supplementary
material [30]. This iteration of the questionnaire was online from February 18, 2016 until
March 3, 2016 (S2) and from February 19, 2016 until March 4, 2016 (S3). Of the 1,573 con-
tacted users in S2, 30 had an invalid email address and could not be reached. In the end,
127 participants filled out the questionnaire (response rate 8.2%). Of the 877 users in S3,
18 had an invalid email address and 91 participants completed the questionnaire (response

100 4 Expertise Development: Towards a Theory of Software Development Expertise

S1 (n=122) S2 (n=127) S3 (n=86)

0
10

20
30

40
50

General experience

S1 (n=122) S2 (n=127) S3 (n=86)

0
10

20
30

40
50

Java experience

S1 (n=122) S2 (n=127) S3 (n=86)

1
2

3
4

5
6

General expertise

S1 (n=122) S2 (n=127) S3 (n=86)

1
2

3
4

5
6

Java expertise

Figure 4.5 – General/Java experience (GE , JE) and general/Java expertise rating (GRsem, JRsem) of par-
ticipants in samples S1, S2, and S3.

4.5 Phase 3: Revised Conceptual Theory 101

rate 10.6%). We removed five participants from S3 because their answers either indicated
that the age information from SO was not correct or that they were not active software de-
velopers. This lead to 86 responses available for analysis. Overall, combining S2 and S3, we
had 213 valid responses in phase 3.

In S2, 119 respondents identified themselves as male, three as female and five did not
provide their gender (S3: 84/1/1). The majority of respondents (S2: 64.6%, S3: 61.6%) re-
ported their main software development role to be software developer, the second-largest
group were software architects (S2: 13.4%, S3: 17.5%). In S2, most participants answered
from Europe (47.2%) and North America (32.3%), in S3 the order was reversed (North Amer-
ica (67.4%), Europe (23.3%)). Further demographic information can be found in Table 4.1.

Comparing the demographics of the first two samples, we can see that S1 and S2 are quite
similar, except for the fact that participants in S2 had more experience with Java (Mdn 3.5
vs. 6 years) and rated their Java expertise to be higher (Mdn 4 vs. 5). This indicates that our
sampling approach was successful in reaching active Java developers. In S3, the values for
the amount of professional work time dedicated to software development are quite similar
to the other two samples. However, the developers in this sample are much older (M 59.9
vs. 30.4/31.6) and have much more general programming experience (Mdn 35 vs. 10/10).
This indicates that our sampling approach for S3 was successful in reaching developers with
a long general programming experience. However, many developers in S3 have little Java
experience (Mdn 1.5 years) and also rated their Java expertise relatively low (Mdn 2). One
reason for this could be that one quarter of the participants had a programming experience
of 40 years or more (Q3 = 40) and compared to this time frame, Java is a relatively young pro-
gramming language (introduced 1995). The boxplots in Figure 4.5 visualize the differences
in general/Java experience and expertise between the three samples.

4.5.3 Concepts

Figure 4.4 shows the revised conceptual theory resulting from our analysis of the closed- and
open-ended answers of samples S2 and S3. In the following, we describe the most frequent
(sub-)categories for the high-level concepts of our theory that emerged during the analysis
and combine those qualitative results with quantitative evaluations where possible. For each
concept, we indicate when there were notable differences between the answers in S2 and S3.
Like before, we write the concepts in bold font and the (sub-)categories in SMALL CAPITALS.
We also provide the number of answers we assigned to each concept or category (in brack-
ets). We only present the most frequent categories and provide the complete coding schema
as supplementary material [30].

Tasks Since our SDExp model is task-specific, we asked our participants to name the three
most important tasks that a software development expert should be good at. The three
most frequently mentioned tasks were DESIGNING SOFTWARE ARCHITECTURE (95), WRITING

SOURCE CODE (91), and ANALYZING AND UNDERSTANDING REQUIREMENTS (52). Many partici-
pants not only mentioned the tasks, but also certain quality attributes associated with them,
for example “architecting the software in a way that allows flexibility in project requirements
and future applications of the components” and “writing clean, correct, and understandable
code”. Other mentioned tasks include TESTING (48), COMMUNICATING (44), STAYING UP-TO-
DATE (28), and DEBUGGING (28). Our theory currently focuses on tasks directly related to pro-

102 4 Expertise Development: Towards a Theory of Software Development Expertise

gramming (see Figure 4.4), but the responses show that it is important to broaden this view
in the future to include, for example, tasks related to requirements engineering (ANALYZING

AND UNDERSTANDING REQUIREMENTS) or the adaption of new technologies (STAYING UP-TO-
DATE).

Experience, Knowledge, and Performance Like in the first phase, we asked partici-
pants about general attributes of software development experts. Aspects like having expe-
rience (26), a broad general knowledge (35) about “paradigms [...], data structures, algo-
rithms, computational complexity, and design patterns”, and an “intimate” knowledge about
a certain programming language (task-specific knowledge (30)) were important. In partic-
ular, knowledge about SOFTWARE ARCHITECTURE, including “modularization” and “decom-
position”, was frequently named (22). Interestingly, 20 of the 22 answers mentioning soft-
ware architecture came from the sample of active Java developers. Also similar to the first
phase, participants described properties of experts’ source code such as MAINTAINABILITY

(22), CLEAR STRUCTURE (12), or PERFORMANCE (9). The answers from S2 and S3 supported
the general structure of our theory, which we derived inductively in phase 1 and deductively
in phase 2. Thus, we will focus on new aspects and in particular on factors influencing the
formation of SDExp in the following.

Individual Differences We asked for specific characteristics of experts and in particular for
character traits that support expertise development. Regarding the personality of experts,
participants often described three properties that are also present in the popular five fac-
tor personality model (FFM) [226]: According to our participants, experts should be OPEN-
MINDED (42) and CURIOUS (35) (FFM: openness), be TEAM PLAYERS (37) (FFM: agreeableness),
and be thorough and pay ATTENTION TO DETAIL (FFM: conscientiousness). Two other impor-
tant traits were being PATIENT (26) and being SELF-REFLECTED (20). The latter is an important
connection to the concept of deliberate practice that we introduced in the previous phase
and includes understanding one’s “weaknesses and strengths” and “the ability to learn from
prior mistakes”. Regarding skills that an expert should possess, PROBLEM-SOLVING (84) was
most frequently named. Sub-categories of problem solving are ABSTRACTION/DECOMPOSI-
TION (30), ANALYTICAL THINKING (20), and LOGICAL THINKING (17). An expert can “break a
giant problem into the little pieces that can be solved to add back up to the whole”. Examples
where an analytical approach is needed include bug fixing or “mapping the problem domain
into the solution space”. A second important skill was having the “drive to keep learning”,
which some participants described as CONTINUOUS LEARNING (55). Moreover, like in the first
phase, COMMUNICATION SKILLS (42) were frequently named. In the answers of this iteration,
those skills were often mentioned together with the task of understanding and implement-
ing REQUIREMENTS (32): An expert should be “a good listener during requirement gather-
ing”, understand “a customer’s desires”, “work out what is really needed when the client can
only say what they think they want”, and should be able to “explain what he is doing to non
developers”. According to our participants, another important skill is being able to assess
TRADE-OFFS (19) when comparing alternative solutions. Trade-offs can exist between “de-
sign, maintainability, [and] performance”. Experts should be “able to discern the differences
between early optimization and important design decisions for the long term goal”, which is
closely related to the concept of technical debt in software projects [200].

4.5 Phase 3: Revised Conceptual Theory 103

Mentoring More than half the the participants in S2 and S3 (54.3%) had a (former) col-
league or teacher whom they would describe as their mentor in becoming a better software
developer. We asked those participants to describe their mentor(s). Six categories emerged
during the initial and focused coding of participants’ answers. One category, HAVING TIME,
was only present in the answers from S3: Eight experienced developers named aspects such
as taking time to explain things or honoring solutions that take more time in the beginning,
but save time on the long run. Regarding the mentor’s ROLE, SENIOR DEVELOPER (15), PRO-
FESSOR OR TEACHER (13) and PEER (12) were the most common answers. Two participants
noted that their mentor was actually a JUNIOR DEVELOPER younger than themselves. What is
important are a mentor’s CHARACTER (29), SKILLS (19), his/her EXPERIENCE (16), and his/her
role as a source for FEEDBACK (20) and as a MOTIVATOR (19). The most common character-
istics of mentors were being GUIDING (10), PATIENT (8), and OPEN-MINDED (7). Other im-
portant factors were a mentor’s KNOWLEDGE (26) and his or her PROBLEM SOLVING SKILLS

(9). The most important aspect of a mentor’s FEEDBACK were comments about CODE QUAL-
ITY (7). What participants motivated most was when mentors posed CHALLENGING tasks. In
summary, we can conclude that the description of good mentors resembles the description
of software development experts in general.

Monitoring and Self-reflection We asked participants whether they regularly monitor
their software development activities. Combining the answers from S2 and S3, 38.7% of the
204 participants who answered that question said that they regularly monitor their activity.
We asked those participants how they usually monitor their development activity. In both
samples, the most important monitoring activity was PEER REVIEW (16), where participants
mentioned asking co-workers for feedback, doing code-review, or doing pair-programming.
One participant mentioned that he tries to “take note of how often [he] win[s] technical ar-
guments with [his] peers”. Participants also mentioned TIME TRACKING (14) tools like Waka-
Time or RescueTime, ISSUE TRACKING (11) systems like Jira or GitHub issues, and PROJECT

MANAGEMENT (14) tools like Redmine and Scrum story points as sources for feedback, com-
paring expected to actual results (e.g., time goals or number of features to implement). Three
developers reported writing a DEVELOPMENT DIARY.1 Regarding employed metrics, partici-
pants reported using simple metrics such as the COMMIT FREQUENCY, LINES OF CODE ADDED

/ DELETED, or number of ISSUES RESOLVED. Further, they reported to use STATIC ANALY-
SIS (18) tools such as SonarQube, FindBugs, and Checkstyle, or to use GITHUB’S ACTIVITY

OVERVIEW (10). In this point, there was a difference between the answers in S2 and S3:
GitHub’s activity overview was mentioned almost exclusively by the active Java developers
(9). Three developers were doubtful regarding the usefulness of metrics. One participant
noted: “I do not think that measuring commits [or] LOC [...] automatically is a good idea to
rate performance. It will raise competition, yes—but not the one an employer would like. It
will just get people to optimize whatever is measured.” The described phenomenon is also
known as Goodhart’s law [89, 159].

Motivation To assess developers’ motivation, we asked our participants what the most re-
warding part of being a software developer is for them. Many participants were intrinsically
motivated, stating that PROBLEM SOLVING (46) is their main motivation—one participant

1https://news.ycombinator.com/item?id=14382965

https://news.ycombinator.com/item?id=14382965

104 4 Expertise Development: Towards a Theory of Software Development Expertise

wrote that solving problems “makes [him] feel clever, and powerful.” Another participant
compared problem solving to climbing a mountain: “I would equate that feeling [of getting
a feature to work correctly after hours and hours of effort] to the feeling a mountain climber
gets once they reach the summit of Everest.” Many developers enjoy seeing the RESULT (53) of
their work. They are particularly satisfied to see a solution which they consider to be of high
QUALITY (22). Four participants mentioned refactoring as a rewarding task. One answered:
“The initial design is fun, but what really is more rewarding is refactoring.” Others stressed
the importance of CREATING SOMETHING NEW (19) and HELPING OTHERS (37). Interestingly,
MONEY was only mentioned by six participants as a motivation for their work.

Work Context To investigate the influence of the work context on expertise development,
we asked what employers should do in order to facilitate a continuous development of their
employees’ software development skills. We grouped the responses into four main cate-
gories: 1. ENCOURAGE LEARNING (70), 2. ENCOURAGE EXPERIMENTATION (61), 3. IMPROVE

INFORMATION EXCHANGE (53), and 4. GRANT FREEDOM (42). To ENCOURAGE LEARNING, em-
ployers may offer in-house or pay for external TRAINING COURSES (34), pay employees to
visit CONFERENCES (15), provide a good analog and/or digital LIBRARY (9), and offer MONE-
TARY INCENTIVES for self-improvement (7). The most frequently named means to ENCOUR-
AGE EXPERIMENTATION were motivating employees to pursue SIDE PROJECTS (29) and build-
ing a work environment that is open for NEW IDEAS AND TECHNOLOGIES (23). To IMPROVE

INFORMATION EXCHANGE between development teams, between different departments, or
even between different companies, participants proposed to FACILITATE MEETINGS (16) such
as agile retrospectives, “Self-improvement Fridays”, “lunch-and-learn sessions”, or “Techni-
cal Thursday” meetings. Such meetings could explicitly target information exchange or skill
development. Beside dedicated meetings, the idea of developers ROTATING (15) between
teams, projects, departments, or even companies is considered to foster expertise develop-
ment. To improve the information flow between developers, practices such as MENTORING

(9) or CODE REVIEWS (8) were mentioned. Finally, GRANTING FREEDOM, primarily in form of
LESS TIME-PRESSURE (18), would allow developers to invest in learning new technologies or
skills.

Performance Decline We asked participants whether they ever observed a significant de-
cline of their own programming performance or the performance of co-workers over time.
Combining the answers from S2 and S3, 41.5% of the 205 participants who answered that
question actually observed such a performance decline over time. We asked those partic-
ipants to describe how the decline manifested itself and to suggest possible reasons. The
main categories we assigned to those answers were: 1. different reasons for DEMOTIVA-
TION (34), 2. changes in the WORK ENVIRONMENT (32), 3. AGE-RELATED DECLINE (13), 4.
CHANGES IN ATTITUDE (10), and 5. SHIFTING TOWARDS OTHER TASKS (7). The most common
reason for an increased DEMOTIVATION was NON-CHALLENGING WORK (8), often caused by
tasks becoming routine over time. One participant described this effect as follows: “I per-
ceived an increasing procrastination in me and in my colleagues, by working on the same
tasks over a relatively long time (let’s say, 6 months or more) without innovation and en-
vironment changes.” Other reasons included not seeing a clear VISION OR DIRECTION in
which the project is or should be going (7) and missing REWARD for high-quality work (6).
Regarding the WORK ENVIRONMENT, participants named STRESS (6) due to tight deadlines

4.5 Phase 3: Revised Conceptual Theory 105

or economic pressure (“the company’s economic condition deteriorated”). Moreover, bad
MANAGEMENT (8) or TEAM STRUCTURE (5) were named. An example for bad management
would be “[h]aving a supervisor/architect who is very poor at communicating his design
goals and ideas, and refuses to accept that this is the case, even when forcibly reminded.”.
CHANGES IN ATTITUDE may happen due to personal issues (e.g., getting divorced) or due to
shifting priorities (e.g., friends and family getting more important). When developers are
being promoted to team leader or manager, they SHIFT TOWARDS OTHER TASKS, resulting in
a declining programming performance. AGE-RELATED DECLINE was described in both sam-
ples, but the more elaborate answers came from the experienced developers. We consider
the investigation of age-related performance decline in software development, together with
the consequences for individual developers and the organization, to be an important area for
future research. To illustrate the effects that age-related decline may have, we provide four
verbatim quotes by experienced developers:

“In my experience (I started programming in 1962), new languages, systems, hardware be-
came more complex and more diverse, programming became more complex. In my 50s I found
it difficult to keep up with new paradigms and languages. So I turned to technical writing and
eventually stopped programming.”
(software developer, age 72)

“For myself, it’s mostly the effects of aging on the brain. At age 66, I can’t hold as much infor-
mation short-term memory, for example. In general, I am more forgetful. I can compensate
for a lot of that by writing simpler functions with clean interfaces. The results are still good,
but my productivity is much slower than when I was younger.”
(software architect, age 66)

“Programming ability is based on desire to achieve. In the early years, it is a sort of compe-
tition. As you age, you begin to realize that outdoing your peers isn’t all that rewarding. [...]
I found that I lost a significant amount of my focus as I became 40, and started using drugs
such as ritalin to enhance my abilities. This is pretty common among older programmers.”
(software developer, age 60)

“I’ve been in the software industry for 36 years. [...] It seems as if for the first half or two
thirds of that time I was fortunate to be involved in areas at the forefront of the technology
wave [...]. For the last 10-15 years though, I have increasingly had the feeling that waves of
technology were passing me by [...]. Once I do start to get involved [...] there is a huge learning
curve to overcome and I labour to deliver stories as rapidly as younger colleagues who have
been immersed in the relevant technology for longer.”
(software developer, age 57)

4.5.4 Relationships

The only relationships we added in the third phase are related to the concept of mentoring.
As mentioned above, participants described mentors as an important source for FEEDBACK

and as MOTIVATORS. Thus, we connected mentoring to the corresponding concepts motiva-
tion and feedback in the revised conceptual theory.

106 4 Expertise Development: Towards a Theory of Software Development Expertise

Phase 3 (Revised Conceptual Theory): To refine and elaborate certain concepts of our
preliminary conceptual theory, we conducted a second inductive step, collecting data
from two additional samples of software developers. We added details about individual
differences and task contexts that foster the formation of SDExp, and further investi-
gated concepts such as monitoring, mentoring and self-reflection, which are related to
deliberate practice. We also asked about performance decline over time and identified
age-related decline as a problem for older software developers. Of the developers sur-
veyed in phase 3, 38.7% regularly monitored their development activities, while 41.5%
observed a performance decline for themselves or others over time.

4.6 Experience and Expertise

Since software developers’ expertise is difficult to measure [239], researchers often rely on
proxies for this abstract concept [292]. To provide guidance for researchers, we investigated
the relationship and validity of the two proxies length of experience and self-assessed exper-
tise, which we, for example, used in the observational study presented in Section 2.4 to de-
scribe our study participants (see Tables 2.5 and 2.6).

4.6.1 Programming Experience vs. Expertise

As mentioned above, we asked participants for their general and Java programming experi-
ence (years) and for a self-assessment of their general and Java expertise (semantic differen-
tial from 1=novice to 6=expert), see Table 4.1 and Figure 4.5. To explore how experience, self-
assessed expertise, and other variables are related, we employed the nonparametric Spear-
man’s rank correlation coefficient (ρ). A positive ρ-value indicates a positive correlation, i.e.,
if one variable increases, so does the other; a negative ρ-value indicates a negative correla-
tion, i.e., the variables vary in opposite directions. Our interpretation of ρ is based on Hinkle
et al.’s scheme [179]: low (0.3 ≤ |ρ| < 0.5), moderate (0.5 ≤ |ρ| < 0.7), high (0.7 ≤ |ρ| < 0.9),
and very high correlation (0.9 ≤ |ρ| ≤ 1). We chose this non-parametric test because not all
variables we tested had interval scaling and not all of them were normally distributed. For
our analysis, we considered all variables that had at least a moderate correlation in at least
two samples.

We highlight important correlations in the following, the complete correlation table can
be found in Table 4.2. For samples S1 and S2, the general experience in years (GE) correlates

Table 4.2 – Correlation table for samples S1 - S3 showing Spearman’s ρ (one asterisk: α = 0.05, two
asterisks: α= 0.01); GE : general experience (years), GRsem : general expertise rating (semantic differ-
ential), JE : Java experience, JRsem : Java expertise rating.

ρ
GE JE GRsem JRsem Age

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3
GE - 0.31∗∗ 0.77∗∗ 0.08 0.50∗∗ 0.67∗∗ 0.04 0.03 0.55∗∗ 0.02 0.63∗∗ 0.83∗∗ 0.30∗∗
JE 0.31∗∗ 0.77∗∗ 0.08 - 0.22∗ 0.56∗∗ 0.17 0.78∗∗ 0.76∗∗ 0.89∗∗ 0.11 0.66∗∗ −0.19
GRsem 0.50∗∗ 0.67∗∗ 0.04 0.22∗ 0.56∗∗ 0.17 - 0.28∗∗ 0.68∗∗ 0.27∗ 0.28∗∗ 0.65∗∗ −0.18
JRsem 0.03 0.55∗∗ 0.02 0.78∗∗ 0.76∗∗ 0.89∗∗ 0.28∗∗ 0.68∗∗ 0.27∗ - −0.08 0.57∗∗ −0.24∗
Age 0.63∗∗ 0.83∗∗ 0.30∗∗ 0.11 0.66∗∗ −0.19 0.28∗∗ 0.65∗∗ −0.18 −0.08 0.57∗∗ −0.24∗ -

n 122 127 86 122 127 86 122 127 86 122 127 86 116 119 84

4.6 Experience and Expertise 107

at least moderately with the self-assessed general expertise rating (GRsem) and the partici-
pants’ age in years. Interestingly, this correlation cannot be observed for the experienced
developers (S3). For the active Java developers (S2), the general experience (GE) and the
Java experience (JE) have a high correlation. The Java experience (JE) has a high correla-
tion with the self-assessed Java expertise rating (JRsem) for all three samples, and a moderate
correlation with the age for the active Java developers (S2).

From the observed correlations, we cannot draw consistent conclusions that are valid for
all three samples and for both types of experience (general and Java). Our interpretation of
these results is that, depending on the background of the participants, experience in years
can or cannot be a valid proxy for (self-assessed) programming expertise. Generally, de-
spite the fact that most researchers would probably agree with the definition of expertise as
achieving “outstanding performance” [131], in many empirical studies programming exper-
tise has been operationalized as years (or months) of programming experience [292, 301].
Our results, which suggest that this operationalization may not be valid, is in line with stud-
ies showing that excellent software professionals have broader but not necessarily longer
experience [111, 299, 300, 301].

We can complement the high correlation between Java experience in years (JE) and the
self-assessed Java expertise rating (JRsem) with answers to one question from the focused
questionnaire. After the first self-assessment of Java expertise, we asked participants which
aspects they considered when assessing their Java expertise. We provided seven answer op-
tions and an additional text field for custom answers (selecting multiple answers was pos-
sible). In sample S3, participants’ “contact time with Java” was the most frequently chosen
answer, 75.58% selected this option. In sample S2, 70.87% of the participants selected the
contact time—only “depth of Java knowledge” was chosen more frequently (85.04%). This
shows that the time developers worked with a language is, beside the perceived depth of
their knowledge, an important factor when assessing their expertise in that language. How-
ever, it is interesting to see that this relationship between experience and expertise is not as
clear when assessing general programming expertise.

4.6.2 Validity of Expertise Self-assessments

In the previous subsection, we motivated that experience may not always be a valid proxy
for expertise. We were also interested in the validity of self-assessed expertise, which is, like
other self-reports, context-dependent [286]. The validity of self-assessed expertise is related
to the concept of self-reflection in our conceptual theory, but has also methodological impli-
cations for software engineering research in general, because self-assessed programming ex-
pertise is often used in studies with software developers to differentiate between novices and
experts [292]. To analyze the influence of question context on expertise self-assessments, we
asked the participants in samples S2 and S3 for a second self-assessment of their Java exper-
tise at the end of the online survey. At that point, we did not only provide a semantic differ-
ential scale like in the beginning of the survey (JRsem, see Table 4.1), but also a description
of the rating scale stages based on the 5-stage Dreyfus model of skill acquisition [114] (JRdre),
ranging from novice (1) to expert (5). The Dreyfus model, proposed by Stuart and Hubert
Dreyfus in 1980 [114], describes the following five stages that an individual passes through
when acquiring a skill: novice, advanced beginner, competent, proficient, and expert [253].
The model has been applied in various contexts, but researchers also discussed its limita-

108 4 Expertise Development: Towards a Theory of Software Development Expertise

Sem.Dif. Dreyfus

1
2

3
4

5

Sample 2

Sem.Dif. Dreyfus

1
2

3
4

5

Sample 3

Figure 4.6 – Self-assessment of participants’ Java expertise: Adjusted semantic differential vs. Dreyfus
model (S1: n = (127;127), S2: n = (86;82)).

tions [253]. We based our description of the Dreyfus model on a later description by Stuart
Dreyfus [113] and an adapted version by Andy Hunt [181]. We provide the description of the
five stages, which we used in the focused questionnaire, as supplementary material [30]. The
goal of this setup was to investigate if providing additional context has a significant influence
on developers’ self-assessment compared to a semantic differential scale without context.

When designing the initial questionnaire, we chose a 6-point scale for the expertise rating
such that participants have to decide whether they consider themselves to be either on the
novice (1-3) or expert (4-6) side of the scale, without the option to select a middle value [145,
241]. To be able to compare the ratings, we had to adjust JRsem to be in range [1,5] using
the following function: adj (x) = 1

5 + 4
5 x. To test for significant differences between the two

ratings, we applied the non-parametric two-sided Wilcoxon signed rank test [363] and report
the corresponding p-value (pw). To measure the effect size, we used Cliff ’s delta (δ) [91]. Its
values range between +1, when all values of the second group are higher than the values
of the first group, and −1, when the reverse is true. Our interpretation of δ is based on the
guidelines by Kitchenham et al. [194]: negligible effect (|δ| < 0.112), small effect (0.112 ≤ |δ| <
0.276), medium effect (0.276 ≤ |d | < 0.428), otherwise large effect. Moreover, we report the
confidence interval of δ at a 95% confidence level (CIδ). We again used the nonparametric
Spearman’s rank correlation coefficient (ρ) [303] to test the statistical dependence between
the ratings.

The Wilcoxon signed rank test indicated that JRdre is significantly higher than JRsem for
the experienced developers in S3 (pw = 0.0009), but the difference is not significant for
the active Java developers in S2 (pw = 0.47). Cliff’s δ shows only a negligible effect for S2
(δ= 0.08, CIδ = [−0.20,0.04]), but a small positive effect for S3 (δ= 0.17, CIδ = [0.004,0.33]),
i.e., experienced developers tended to adjust their self-assessments to a higher rating after
we provided context. The boxplots in Figure 4.6 visualize this difference. A possible interpre-
tation of this result could be found in the Dunning-Kruger effect [201], which is one form of
the illusory superiority bias [180] where individuals tend to overestimate their abilities. One
result of Kruger and Dunning is that participants with a high skill-level underestimate their
ability and performance relative to their peers [201]. This may have happened in the sample
with experienced developers (S3) when they assessed their Java expertise using the seman-
tic differential scale. When we provided context in form of the Dreyfus model, they adjusted
their ratings to a more adequate rating, whereas the less experienced developers (S2) stuck
to their, possibly overestimated, ratings. We cannot conclude that the Dreyfus model in fact
leads to more adequate ratings for experienced developers, because we do not have the data

4.7 Limitations and Threats to Validity 109

to assess the validity of their ratings. However, we can conclude that the way we asked devel-
opers to assess their Java programming expertise was influenced by the context we provided.

Experience and expertise: Neither developers’ experience measured in years nor the
self-assessed programming expertise ratings yielded consistent results across all set-
tings. One direction for future work is to investigate and compare different expertise
rating scales to provide guidance for researchers designing studies involving expertise
self-assessments.

4.7 Limitations and Threats to Validity

Since we conducted mixed-methods research, we assess the limitations and threats to va-
lidity of our study in terms of the typical quantitative categories internal and external va-
lidity [186], but we will also apply the qualitative evaluation criteria credibility, originality,
resonance, and usefulness [81].

Internal Validity In our analysis of expertise self-assessments (see Section 4.6.2), we can-
not rule out that a confounding factor lead to the higher self-assessments of experienced
developers (S3). However, although we used the same questionnaire for S2 and S3, the effect
was only significant and non-negligible for S3. Our goal was not to be able to quantify the
effect of context on developers’ self-assessment, but to show that it exists to motivate future
research on this aspect.

External Validity The main limitation affecting external validity is our focus on Java and
on open source software development, in particular on GH and SO users. Moreover, as one
of three samples targeted experienced developers and only five participants identified them-
selves as female, our results may be biased towards experienced male developers. Neverthe-
less, we are confident that our theory is also valid for other developer populations, because
of the abstract nature of its core concepts and their grounding in related work. Moreover,
although we contacted open source developers, many of them reported on their experiences
working in companies (see, e.g., the concepts work/task context).

Qualitative Evaluation Criteria To support credibility of our findings, we not only induc-
tively built our theory from surveys with 335 software developers, but also deductively in-
cluded results from related work on expertise and expert performance. We constantly com-
pared the answers between all three samples and mapped them to overarching concepts and
categories. For the core concepts general/task-specific knowledge and experience, and the
connection of individual differences, work context, behavior, and performance, we observed
theoretical saturation in the way that those concepts were frequently named and the descrip-
tions did not contradict the relationships we modeled. However, as we only collected data
from three samples of developers, the concepts, and in particular the categories we added
in phase 3, have to be validated using more data to achieve a higher level of theoretical sat-
uration. In terms of originality, we not only contribute a first conceptual theory of SDExp,
but also a research design for theory building that other software engineering researchers
can adapt and apply. Regarding the resonance of our theory, the feedback, in particular from

110 4 Expertise Development: Towards a Theory of Software Development Expertise

samples S2 and S3 with focused questions directly related to theory concepts, was generally
positive. Participants described their participation as a “very informative experience” and
a “nice opportunity to reflect”. However, there was some negative feedback regarding the
Java focus, especially in sample S3. Participants were mainly asking why we concentrated
on Java, not questioning the general decision to focus on one particular programming lan-
guage for some questions. To motivate the usefulness of our theory, we refer to Section 4.9,
which contains short summaries of our findings targeting researchers, software developers,
and their employers.

Other Limitations The qualitative analysis and theory-building was mainly conducted by
the first author and was then discussed with the second author. We tried to mitigate pos-
sible biases introduced by us as authors of the theory by embedding our initial GT in re-
lated work on expertise and expert performance (see Section 4.4) and then again collect-
ing data to further refine the resulting conceptual theory (see Section 4.5). However, when
theorizing, there will always be an “uncodifiable step” that relies on the imagination of the
researcher [203, 357].

4.8 Related Work and Operationalization

Expertise research in software engineering mainly focused on expert recommendation, uti-
lizing information such as change history [191, 227, 239], usage history [216, 351], bug re-
ports [15], or interaction data [144, 267]. Investigated aspects of software development ex-
pertise (SDExp) include programming experience [292], age [242], developer fluency [375],
and desired attributes of software engineers [209] and managers [193]. Moreover, similar
to our study, Graziotin et al. observed that vision and goal-setting are related to developers’
performance [169]. However, as mentioned above, up to now there was no theory combining
those individual aspects.

Beside the references mentioned in the description of our theory, the psychological con-
structs personality, motivation, and mental ability provide many links to theories and in-
struments from the field of psychology. To assess developers’ personality, e.g., one could
employ the International Personality Item Pool (IPIP) [156], measuring the big five personal-
ity traits. There have been many studies investigating the personality of software develop-
ers [104]. Cruz et al. conclude in their systematic mapping study that the evidence from ana-
lyzed papers is conflicting, especially for the area of individual performance. Thus, more re-
search is needed to investigate the connection between personality and expert performance.
Our theory can help to identify confounding factors affecting performance, in particular the
interplay between an individual’s mental abilities, personality, motivation, and his/her gen-
eral and task-specific knowledge and experience. The connection between mental abilities,
personality, and domain knowledge in expertise development has, for example, been de-
scribed by Ackerman and Beier [4].

The concepts of communication and problem-solving skills have been thoroughly de-
scribed in psychology literature [176, 213, 269]. Researchers can use this knowledge when
designing studies about the influence of such skills on the formation of SDExp. The other
two general skills we included in our theory, CONTINUOUS LEARNING and ASSESSING TRADE-
OFFS, have also been described by Li et al. [209], who identified continuously improving and
effective decision-making as critical attributes of great software engineers.

4.8 Related Work and Operationalization 111

Very closely related to the concept of deliberate practice [132], which we included in our
theory, is the concept of self-directed learning [231] that connects our work to educational
research. Similar to our theory, Merriam et al. consider motivation and self-monitoring to
be important aspects of self-directed learning [231]. In their article about the “reflective
software engineer”, Dyba et al. mention reflecting on past practice as a central practice for
continuous or lifelong learning in software development [124]. However, they also point to
“stress, pressure, and over-commitment” as common factors hindering effective reflective
learning.

To capture the motivation of developers, one could adapt ideas from self-determination
theory [276] or McClelland’s theory of the big three motives [225]. There also exist instru-
ments like the Unified Motive Scales (UMS) [284] to assess human motivation, which can be
utilized in studies. Beecham et al. conducted a systematic literature review of motivation in
software engineering [53]. While many studies reported that software developers’ motivation
differs from other groups, the existing models diverge and “there is no clear understanding of
[...] what motivates Software Engineers.” Nevertheless, the authors name “problem solving,
working to benefit others and technical challenge” as important job aspects that motivate
developers. This is very similar to our categories WORK AS CHALLENGE and HELPING OTHERS,
which we assigned to the concept motivation in our theory. An area related to motivation
is the (perceived) productivity of individual developers [88, 235] or software development
teams [171, 271]. The results from existing studies in this area can be adapted to assess the
performance of developers for monitoring, feedback, and self-reflection [236, 338]. Beside
their connection to existing software engineering research, those concepts also connect our
theory to two additional areas of psychology: metacognition (“knowledge about one’s own
knowledge [... and] performance”) [137] and self-regulation [377].

To measure mental abilities, tests like the WAIS-IV [359] or the graphical mini-q test [50]
can be employed. As motivated above, the connection between aging and expertise [199],
and in particular how a (perceived) age-related performance decline influences individuals
and how they compensate this decline, are important directions for future research. Consid-
ering the phenomenon of global population aging [215], the number of old software devel-
opers is likely to increase in the next decades. With their experience and knowledge, those
developers are a valuable part of software development teams. However, as our qualitative
data suggests, they may become unsatisfied with their jobs and may even drop out of soft-
ware development.

To assess the performance of individual software developers, researchers can choose from
various existing software metrics [138, 187]. Especially maintainability metrics [95] are of in-
terest, because in our study, maintainability was the most frequently named source code
property of experts. Tests about general programming knowledge could be derived from lit-
erature about typical programming interview questions [16, 228, 240]. To assess task-specific
Java knowledge, one could rely on commercially available tests like the exams for Oracle’s
Java certification. Britto et al. [67] report on their experience measuring learning results and
the associated effect on performance in a large-scale software project. Their results can help
measuring the concepts education and performance.

112 4 Expertise Development: Towards a Theory of Software Development Expertise

4.9 Conclusion

In this chapter, we presented a conceptual theory of software development expertise (SD-
Exp). The theory is grounded in the answers of an online survey with 355 software develop-
ers and in exiting literature on expertise and expert performance. Our theory describes var-
ious properties of SDExp and factors fostering or hindering its development. We classified
our theory as a teleological process theory that views “development as a repetitive sequence
of goal formulation, implementation, evaluation, and modification of goals based on what
was learned” [344]. Our task-specific view of SDExp, together with the concept of deliberate
practice and the related feedback cycle, fits this framing, assuming that developers’ goal is to
become experts in certain software development tasks.

We reached a diverse set of experienced and less experienced developers. However, due to
the focus on Java and open source software, future work must investigate the applicability
of our results to other developer populations. We plan to add more results from existing
studies in software engineering and psychology to our theory, but we also plan to conduct
own studies based on our theory. In particular, we want to broaden the scope to include
more tasks not directly related to programming. Nevertheless, the theory is already useful
for researchers, software developers, and their employers. In the following, we will briefly
summarize our findings with a focus on those target audiences.

Researchers Researchers can use our methodological findings about (self-assessed) ex-
pertise and experience (see Section 4.6) when designing studies involving self-assessments.
They should remember that those self-reports are always context-dependent [286]. If re-
searchers have a clear understanding what distinguishes novices and experts in their study
setting, they should provide this context [286] when asking for self-assessed expertise and
later report it together with their results. We motivated why we did not describe expertise
development in discrete steps (see Section 4.4), but a direction for future work could be to at
least develop a standardized description of novice and expert for certain tasks, which could
then be used in semantic differential scales. To design concrete experiments measuring cer-
tain aspects of SDExp, one needs to operationalize the conceptual theory [175]. We already
linked certain concepts to measurement instruments such as UMS (motivation), WAIS-IV
(mental abilities), or IPIP (personality). We also mentioned static analysis tools to measure
code quality and simple productivity measures such as commit frequency and number of
issues closed. This enables researchers to design experiments, but also to re-evaluate re-
sults from previous experiments. There are, e.g., no coherent results about the connection
of individual differences and programming performance yet. One could review studies on
developers’ motivation [53] and personality [104] in the context of our theory, to derive a
research design for analyzing the interplay of individual differences and SDExp.

Developers Software developers can use our results to see which properties are distinctive
for experts in their field, and which behaviors may lead to becoming a better software devel-
oper. For example, the concept of deliberate practice, and in particular having challeng-
ing goals, a supportive work environment, and getting feedback from peers are important
factors. For “senior” developers, our results provide suggestions for being a good mentor.
Mentors should know that they are considered to be an important source for feedback and
motivation, and that being patient and being open-minded are desired characteristics. We

4.9 Conclusion 113

also provide first results on the consequences of age-related performance decline, which is
an important direction for future work.

Employers Employers can learn what typical reasons for demotivation among their em-
ployees are, and how they can build a work environment supporting the self-improvement
of their staff. Beside obvious strategies such as offering training sessions or paying for confer-
ence visits, our results suggest that employers should think carefully about how information
is shared between their developers and also between development teams and other depart-
ments of the company. Facilitating meetings that explicitly target information exchange and
learning new skills should be a priority of every company that cares about the development
of their employees. Finally, employers should make sure to have a good mix of continuity and
change in their software development process, because non-challenging work, often caused
by tasks becoming routine, is an important demotivating factor for software developers.

Outreach After finishing our work on the conceptual theory, we wrote a blog post2 sum-
marizing the results. To communicate those results back to the developers who supported
us by participating in the online surveys, we contacted all survey participants who provided
their email address for this purpose, pointing them to the blog post and a paper preprint.
Some of the former participants again provided feedback, for example by mentioning that
the core of our theory applies not only to software development, but also to other knowledge
worker [115, 116, 263] jobs as well. We consider evaluating the applicability of our theory to
other domains to be an important direction for future work.

2http://empirical-software.engineering/blog/expertise/

http://empirical-software.engineering/blog/expertise/

5 Chapter 5

Methodological Insights: Issues
in Sampling Software Developers

“The mind once enlightened cannot again become dark.”

—Thomas Paine, The Political Writings of Thomas Paine (1824)

Online surveys like the ones we conducted for this dissertation are considered to be a feasi-
ble means for investigating the state of practice [78]. In particular, surveys are an important
empirical method used in software engineering (SE) research that can be employed to ex-
plore and describe various characteristics of a broad population [125]. However, reaching
professional software developers with surveys is a difficult task. Except for single compa-
nies or institutions that allow researchers to use a list of their employees, random sampling
of software developers is impossible most of the time. Researchers therefore often rely on
available subjects, which is known as convenience sampling. Applying non-random sam-
pling techniques like convenience sampling may lead to biased samples with limited exter-
nal validity. To mitigate the threats to external validity, researchers need detailed knowledge
about the population of software developers they want to target, but this information is often
not available. Further, some of the sampling techniques that researchers employ raise ethi-
cal concerns, such as contacting developers on GitHub using email addresses users did not
provide for this purpose. In this chapter, we summarize what we learned while conducting
online surveys with software developers.

The content of this chapter is based on a peer-reviewed publication [29].

Contributions:

• Experience reports for different survey sampling strategies.
• Presentation of the idea of a systematic database with software developer demograph-

ics to assess the external validity of surveys conducted using non-random sampling
techniques.

• Building awareness about ethical issues that may arise with sampling approaches that
researchers currently utilize.

5.1 Introduction

After pointing to general issues with convenience samples, we report on our experience with
different sampling strategies we utilized to recruit software developers for online surveys.
Then, we take a closer look at the comparability of convenience samples using participant
demographics, and present such a comparison using data from the yearly Stack Overflow
developer survey. We conclude this chapter by highlighting possible ethical issues of the
sampling strategies we present and point to directions for future work.

116 5 Methodological Insights: Issues in Sampling Software Developers

5.2 Sampling Strategies

Generally, one can divide sampling strategies into random and non-random ones [18, 168].
To draw a random sample, one needs an index with possible participants, which is often not
available in SE research when targeting professional developers. Therefore, many reported
research findings are based on convenience samples, which will be defined in the following.
Afterwards, we describe our experience with different sampling strategies to recruit software
developers for online surveys.

5.2.1 Convenience Sampling

Often, researchers do not have access to lists of software developers, e.g., working for a par-
ticular company or in a certain area, to draw a random sample from. Thus, it is common
to rely on available subjects, which is known as convenience sampling [18, 168] or opportu-
nity sampling [288]. Gravetter and Forzano describe the process of convenience sampling as
“[p]eople are selected on the basis of their availability and willingness to respond” [168]. De-
spite this sampling method being very popular [168, 288], it often leads to a biased sample.
One problem is that researchers are likely to approach people “from their own social and
cultural group” [288]. A specific problem of advertising online surveys, for instance using
social media, is the self-selection bias [274, 288]: Some types of people may be more likely
to volunteer than others and perhaps some of them “may be particularly keen to please” the
researcher [288]. Babbie points to the limited generalizability of findings derived from a con-
venience sample [18]. He notes that researchers “must take care not to overgeneralize” from
such samples because convenience sampling “does not permit any control over the repre-
sentativeness”. Further, he prompts researchers to “alert readers to the risks associated with
this method”. Beside relying on a convenience sample and self-selection, researchers often
encourage participants to advertise and share the survey, leading to a snowball sampling
approach. Again, this results in samples with “questionable representativeness” [18].

Gravetter and Forzano name two strategies to mitigate problems associated with conve-
nience sampling [168]. First, researchers should try to ensure that their samples are “reason-
ably representative and not strongly biased” by carefully selecting a broad cross-section of
the target population. To do this, researchers need to know at least some basic demographic
information about the population (see Section 5.3). Second, researchers should provide “a
clear description of how the sample was obtained and who the participants are”. The lat-
ter is also recommended by Kitchenham et al. in context of empirical software engineering
research [195].

5.2.2 Experience with Sampling Strategies

For the online survey with 394 participants described in Section 2.2.2, we used different
sampling strategies that we are going to present in this section. Our research was divided
into four recruitment phases: First, we recruited participants by a network of colleagues and
contacts, asking them to motivate others to participate in our study. In the second phase, we
posted a call for participation in two social networks, various online communities and IRC
channels. We also contacted several German software companies and asked them to forward
a call for participation to their employees. In the third phase, we contacted a German news

5.2 Sampling Strategies 117

Figure 5.1 – Timeline with responses per day for the first four weeks of our online survey.

site for software professionals to publish a short article about our survey, asking the read-
ers to participate. In the last recruitment phase, we contacted people working in the area of
software engineering, asking them to advertise our survey on Twitter. We also posted a call
for participation in a large LinkedIn group with over 44.000 members, focusing on software
architecture.

In the following, we will report on our experience with these different ways of recruiting
software developers. Figure 5.1 shows the responses we received per day during the first
four weeks. The beginning of each of the four recruitment phases is highlighted. Further, we
describe our experience with sampling GitHub developers using the GHTorrent data set [164]
for the expertise study described in Section 4.2.

Personal Network

The effectiveness of using your own personal network to recruit participants for a study
with software developers depends of course on the quality and quantity of the network. As
pointed out above, this approach may lead to a biased sample towards one’s own background
and views. To increase the response rate, one should not only send the same email, for in-
stance, to all members of an alumni mailing list, but formulate at least part of the email
individually. In case of our study, we were able to recruit 46 participants (12% of total par-
ticipants), before we started the next recruitment phase. Compared to the other ones, it was
the least effective sampling strategy regarding the quantity of responses. However, it was
rather efficient because contacting the own personal network does not take too much time
and the contacts may forward the invitation to colleagues (snowball sampling). In general,
this strategy may be better suited for other study designs such as controlled experiments or
interviews, which are not in the focus of this chapter.

Online Networks and Communities

In the second phase, we posted a call for participation in two social networks, various online
communities and IRC channels. The social networks were Facebook and Google+; we used
both our group’s and our private accounts. Then, we looked for online communities for
software developers. We posted calls for participation in the following communities:

118 5 Methodological Insights: Issues in Sampling Software Developers

• DaniWeb (http://www.daniweb.com)

• Dev Shed (http://forums.devshed.com)

• dream.in.code (http://www.dreamincode.net)

• CodeProject (http://www.codeproject.com/)

• TopCoder (http://www.topcoder.com)

• Reddit (https://www.reddit.com/)

• The Whiteboard (http://chat.stackexchange.com/rooms/21/the-whiteboard)

Moreover, we posted on various freenode1 IRC channels including ##c, ##java, and
##csharp. If there were answers to our posts, they were mostly positive or contained con-
structive feedback. However, especially in the IRC channels, some members were very criti-
cal about using these channels to recruit participants for a survey. Overall, this recruitment
phase was the most work-intensive one. It is hard to judge the efficiency of using online
networks and communities, because we contacted software companies in parallel (see be-
low). Considering the fact that approximately 66 participants (17%) answered in the second
recruitment phase, which is not significantly more than in the first phase, this strategy does
not seem to be more efficient.

Directly Contacting Companies

As mentioned above, in the second phase, we also contacted several German software com-
panies, which we randomly selected from online yellow pages, and asked them to forward a
call for participation to their employees. Some of them refused to forward our request, but
most of them did not answer at all. One company, for instance, responded that they “receive
many similar requests, but [their] business is [their] priority” and they “cannot provide any
support or working time for an interview or a questionnaire”.

This leads to a general problem when contacting people or companies to which no per-
sonal relationship exists: the lack of a gatekeeper. Gatekeepers are the persons who control
researchers’ access to organizations [189]. Researchers need their support to access par-
ticipants inside these organizations. In the first phase, our contacts served as gatekeepers,
because they were able to ask colleagues to participate from inside their organizations. With-
out such gatekeepers, it is very difficult to cross the borders of a company, especially when
the researcher is conducting basic research without any immediate benefit for the company.

Public Media

In the third recruitment phase, we tried to directly reach software developers using public
media. We contacted both German and international websites, but only one German news
site for software developers, heise developer,2 agreed to publish a short article about our sur-
vey, asking the readers to participate. Again, a gatekeeper in one of the editorial teams would
have been very helpful. Looking at the timeline in Figure 5.1, one can see that this article was
by far the most effective recruitment channel, responsible for generating approximately 43%
of all our responses. Considering the relatively low effort involved, in particular compared to
the first two phases, we can also conclude that this was the most efficient strategy.

1https://freenode.net/
2http://www.heise.de/developer/

http://www.daniweb.com
http://forums.devshed.com
http://www.dreamincode.net
http://www.codeproject.com/
http://www.topcoder.com
https://www.reddit.com/
http://chat.stackexchange.com/rooms/21/the-whiteboard
https://freenode.net/
http://www.heise.de/developer/

5.2 Sampling Strategies 119

Using Testimonials

In the last recruitment phase, we contacted people working in the area of software engineer-
ing, asking them to advertise our survey on Twitter. Some declined our request, but generally
the success rate was higher than in the second and third phase. In the end, three persons on
Twitter with 2.300, 4.600, and 9.900 followers tweeted about our survey and we were allowed
to post a call for participation on one large LinkedIn group with over 44.000 members, focus-
ing on software architecture. It is hard to judge how many answers were actually generated
by the last phase, as it overlaps with the prior ones, but we can estimate the last phase to
have generated about 73 answers (19%).

Using GHTorrent

For our research on software development expertise (see Chapter 4), we employed the GHTor-
rent data set for sampling software developers. GHTorrent is a project collecting data about
all public projects available on GitHub, providing this data via MongoDB and MySQL both
online and as data dumps [164]. In a recent meta-analysis, Cosentino et al. found that GHTor-
rent was the most commonly used data source for research on GitHub [100]. One table in the
relational database scheme of GHTorrent provides information about all users who were ac-
tive in the monitored time frame. Information provided includes the GitHub username, real
name, company, location, and email address; the latter was only present until March 2016
(see Section 5.4). Not every field is available for every user, but the data quality is quite good.
By combining the user table with other available information in the data set like commits,
issue comments, or pull request, it is possible to get a good overview of the activities of a
user. In our case, we used this information to identify active Java developers and contacted
a random sample of them via email, asking them to participate in our survey.

The possibility to draw a random sample from a set of developers possessing certain char-
acteristics is very compelling and normally not possible outside a single company or insti-
tution. Thus, there have been several research papers over the last years following this ap-
proach. However, certain ethical issues arise, which will be discussed in Section 5.4.

Other Sampling Strategies

Beside the sampling strategies described above, there exist further strategies like using com-
mercial recruiting services such as Survata3 or crowdsourcing platforms such as Amazon
Mechanical Turk.4 However, it is questionable whether these services are suited for reaching
professional software developers. Alternatively, researchers may personally advertise their
surveys at industry conferences, which is rather time-consuming, or use students as par-
ticipants, which is again not well-suited if professional software developers are the target
population. When conducting research with students as participants, special methodologi-
cal and ethical issues arise [366]. These issues are out of scope for this chapter as we focus
on professional software developers.

3https://www.survata.com/
4https://www.mturk.com

https://www.survata.com/
https://www.mturk.com

120 5 Methodological Insights: Issues in Sampling Software Developers

Summary

We reported on our experience with different ways of recruiting software developers for an
online survey. Of course the response rates may depend on the studied problem and the
potential benefit for the participants. However, as we collected about 43% of the responses
in one of the four phases, our recommendations are still valid. In the course of this chapter,
we will highlight our results and propositions for the presented issues as follows:

Issue: Reaching professional software developers with surveys can be a cumbersome
and time-consuming task.
Experience: For us, convincing a news site for software developers to write about our
survey was the most efficient and effective recruiting channel. In addition to that, find-
ing “testimonials” or gatekeepers in companies or social networks is very important to
cross (company) boundaries, build trust, and reach many developers.

Issue: Commonly employed sampling approaches lead to convenience samples with
several issues and biases.
Experience: One sampling approach we employed did not result in a convenience sam-
ple, namely using the GHTorrent data set to randomly draw a sample from all monitored
Java developers on GitHub. However, ethical issues exist with this sampling approach
(see Section 5.4.3). Generally, not all possible sampling issues and biases can be miti-
gated, but it is important that researchers are aware of limitations and openly commu-
nicate them.

One strategy to deal with convenience samples is to collect and present demographic data
about participants to allow others to compare the sample at hand with what is know about
the population. In the next section, we present possible data sets to compare samples to, but
we also point at the problem that no structured and systematic source for software developer
demographics exists.

5.3 Participant Demographics

As motivated above, one way of dealing with convenience samples is to describe the sam-
pled population as thoroughly as possible to be able to compare it to other sample popu-
lations. Unfortunately, there is currently no structured and systematic source where demo-
graphics from different studies involving software developers are collected. Probably the
best resource available at the moment are the results of the yearly Stack Overflow developer
surveys.

The complete data sets with all responses for the yearly surveys starting in 2010 are avail-
able online. In the 2015 survey, for instance, 26,086 developers participated [307]. To com-
pare the sample from our study about sketches and diagrams in practice to the Stack Over-
flow (SO) data, we chose the 2013 data set with 7,643 responses, because our data was col-
lected in the same year. Both our sample and the SO data set contain information about par-
ticipants’ age, gender, and experience in software development. After adjusting the scales we
were able to compare these three demographics and found that our sample was, compared

5.4 Ethical Considerations 121

to the SO data set, biased towards older and more experienced developers (see Figure 5.2 for
the age comparison). Further, in our study, more participants refused to provide their age
(5.6% vs. 1.8%) and we had fewer female respondents (2.8% vs. 4.8%). We also compared
the 2013 SO data set to the 2015 SO data set (n = 26,086) and found no major differences
in participants’ basic demographics. The SO data sets also provide information about par-
ticipants’ occupation, which allows researchers to filter the data. One could, for instance,
compare a particular sample only to developers in the SO data set who identified themselves
as “desktop developers” or other roles depending on the context of one’s own study.

With the above comparison example, we want to motivate how researchers could profit
from a large database with demographic information from different studies. It is important
to have access to a diverse selection of data sets, as data from single websites or services like
SO may likely be biased in certain ways, regardless of a large sample size [177]. There may be
a significant difference in software developers who are active on Stack Overflow or GitHub
compared to software developers not using such websites or services.

Beside knowledge of demographics, researchers surveying users of single services such as
GitHub would benefit from information about typical response rates for such surveys, as a
low response rate may lead to nonresponse bias [280]. Currently, there are only few rather old
papers that describe typical response rates for software engineering surveys [78, 262]. When
describing survey samples, another important aspect is sample size. Having a database with
information about SE surveys conducted in the past would enable researchers to determine
the local standard for samples sizes in the SE research community, similar to what Caine has
done for the CHI community [73].

Issue: Relying on convenience samples or samples drawn from single online platforms
may lead to biased results.
Proposition: Thoroughly describing a study sample and comparing it to other samples
is an important strategy to address this issue. However, a structured and systematic
source with key demographics, samples sizes, and response rates for surveys conducted
by the software engineering research community does not exist. We should build and
maintain such a database to be able to compare samples and derive local standards,
e.g., for the sample size.

5.4 Ethical Considerations

Ethics are “rules of behavior based on ideas about what is morally good and bad” [232]. The
sampling strategies described above not only differ in terms of their effectiveness and effi-
ciency regarding the number of software developers that can be reached, but they also differ
regarding their ethical implications. Researchers should be aware that contacting software
developers causes costs even if the contacted individual does not decide to participate in the
survey. Reading the invitation email and deleting it also takes time. We got alerted by a re-
sponse of one software developer whom we contacted using the email address he provided
in his public GitHub profile:

122 5 Methodological Insights: Issues in Sampling Software Developers

<20 20−24 25−29 30−34 35−39 40−50 51−60 >60 NA

Sample
SO 2013

Age

%

0
5

15
25

<20 20−24 25−29 30−34 35−39 40−50 51−60 >60 NA

SO 2015
SO 2013

Age

%

0
5

15
25

Figure 5.2 – Age distribution of our sample and the Stack Overflow developer surveys 2013 and 2015.

“I get emails like this every week. You might not realize this but it’s majorly annoying and I
consider this problem now worse than spam, since Google at least filters out spam for me. [...]
[Y]ou send one, I get one per week – or more. I was playing along for the first 30 or so, and by
now (after several hundred emails) I’m quite annoyed.”

Survey invitations being perceived as spam is not only an ethical challenge [290], but also
a problem for the resulting sample. If certain very active users get contacted very often by
researchers, it becomes less likely that they respond to such survey requests, resulting in
a selection bias towards people who were contacted less often in the past. Further, users
may perceive contacting them using their email address available on GitHub for research
purposes as an intrusion into their privacy, as they did not provide their email address for
that purpose. In the following, we will present general ethical principles and a concrete code
of conduct that deals with issues in sampling participants via email. We concentrate on
ethics and consider the legal situation to be out of the scope of this chapter. Nevertheless,
especially the privacy legislation should be considered when sampling software developers
via emails collected from online resources.

5.4.1 General Ethical Principles

In the United States, the Belmont Report and the subsequent legislation in form of the Com-
mon Rule, in particular the introduction of Institutional Review Boards (IRBs), determined
the ethics of government-funded research involving humans for more than 30 years [350].
The Belmont Report contains three guiding ethical principles: respect for research partic-
ipants, beneficence, and justice in participant selection [251]. Respect for research partici-
pants means protecting their autonomy—they must enter the research “voluntarily and with
adequate information” (informed consent). For beneficence, two basic rules have been de-
fined: (1) “do not harm” and (2) “maximize possible benefits and minimize possible harms”.
Justice in participant selection implies a “fairness in distribution” of the burdens and bene-

5.4 Ethical Considerations 123

fits of research. Even if these principles are challenged by new developments like collecting
and analyzing online data, they are still an important guideline for researchers [290, 350].

5.4.2 The CASRO Code of Ethics

To look out on how other communities handle ethical questions, we will now present an es-
tablished code of standards and ethics, provided by the Council of American Survey Research
Organizations (CASRO) [77]. The CASRO code of ethics has a dedicated section about “in-
ternet research”. One central statement in this section is that “survey research organizations
[must] not use unsolicited emails to recruit survey respondents or engage in surreptitious
data collection methods”. Further, researchers are required to “verify that individuals con-
tacted for research by email have a reasonable expectation that they will receive email con-
tact for research”. The CASRO code of ethics clearly defines when a researcher can assume
that this is the case: (i.) a substantive pre-existing relationship must exist with the contacted
individual; (ii.) the person receiving an email invitation has, based on the existing relation-
ship, a reasonable expectation to be contacted for research purposes and he or she has not
opted out for email communications; (iii.) participants must not be recruited via unsolicited
email invitations.

Moreover, for obtaining email addresses of potential participants, researchers must not
collect “email addresses from public domains” and use “technologies or techniques to col-
lect email addresses without individuals’ awareness”. In the following, we will now briefly
look at the sampling strategies presented in Section 5.2 and evaluate them according to the
criteria from the CASRO code of ethics and the three ethical principles defined in the Bel-
mont Report.

5.4.3 Ethics of Sampling Strategies

When researchers use their personal network to recruit participants for their survey, in most
cases it should be safe to assume that the CASRO criteria for ethical research are fulfilled. The
same applies when approaching companies using a gatekeeper. However, when contacting
companies to which no “substantive pre-existing relationship” exists, the first criterion is
contravened. Using public media to reach developers would also be in line with the crite-
ria, because participants are not directly contacted but read the call for participation on a
news site and can then decide if they want to participate. The sampling approach using data
from GHTorrent would clearly contravene the criteria as well as the statement regarding the
collection of email addresses from public domains.

In March 2016, users’ email addresses were removed from the GHTorrent data dump af-
ter a heated debate on GHTorrent’s issue tracker5 about legal and privacy concerns raised
by certain users [165]. This shows how sensitive the topic is and that a discussion in the re-
search community is needed. Beside the discussion on GitHub, there is also a discussion
on StackExchange Academia about the “Ethics of scraping ’public’ data sources to obtain
email addresses” [123], where the CASRO code of ethics is cited in the highest-ranked answer.
An important aspects of this discussion is what Brown et al. call a “contextual concern”—
researchers need to consider in what context users shared information online [69]. This also
applies for GitHub, where users provide their email address, for instance, “so people can

5https://github.com/ghtorrent/ghtorrent.org/issues/32

https://github.com/ghtorrent/ghtorrent.org/issues/32

124 5 Methodological Insights: Issues in Sampling Software Developers

contact [them] privately about problems in the community” [149] and not to be contacted
by researchers.

Approaching active GitHub developers using the email addresses they published on the
platform also affects the three principles of the Belmont report: As more active users are
likely to be contacted more often by researchers, justice in participant selection is not en-
sured. Further, beneficence is affected if developers change their behavior on GitHub in re-
sponse to emails they perceive as spam (e.g., removing their email address from their profile
page). Also, the benefits of the research are reduced if the sampling strategy leads to biased
samples. Lastly, depending on what other GitHub data researchers use, lack of informed
consent may affect the principle of respect for participants. El Emam points to the general
problem that developers in open source projects probably never intended their work to be
used for research projects [126]. Shilton and Sayles highlight the fact that much of the data
available in social networks may have required informed consent for data collection in other
settings [290]. The same applies for data from GitHub and in particular the data available
through GHTorrent.

Our intention is not to judge prior research and applied sampling practices. Instead, we
want to start a discussion that may lead to new ethical guidelines for SE researchers. We
also do not want to promote the adoption of standards from other communities—in partic-
ular the CASRO code of ethics—but we think that they could inspire ethical guidelines for
SE research. In the discussion, we should also consider the 2012 report of the Association of
Internet Research (AoIR), which advocates flexible, process-oriented, and case-based guide-
lines instead of fixed code ethics [220].

Regarding the form of discussion, we can learn from the CSCW community, which or-
ganized several workshops and panels on ethical questions in the past [139, 142, 378], the
computational social sciences community which published a dedicated book on “Ethical
Reasoning in Big Data” [96], and the CHI community which discussed ethical issues at their
2016 conference [69, 352]. There exists some prior work in the SE community about re-
search ethics [349, 366], but since Vinson and Singer’s statement in the year 2008 that “the
[empirical software engineering] community has yet to develop its own code of research
ethics” [349], not much has changed.

Issue: Compared to other communities, discussing ethical questions is not very com-
mon in the SE research community. Nevertheless, several sampling strategies employed
by SE researchers in the past raise ethical concerns.
Proposition: We need a discussion at SE conferences and in program committees about
ethical research practices. We can learn from other communities like CSCW and CHI
and existing codes of ethics from other disciplines.

5.5 Conclusion

In this chapter, we reported on our experience with different approaches for sampling soft-
ware developers. The most efficient and effective strategies were to use public media and
“testimonials” who advertise the survey. We also highlighted the importance of gatekeepers
who provide access to companies or communities.

5.5 Conclusion 125

Samples of software developers are often drawn in a non-random manner. To be able to
assess the external validity of studies involving such samples, researchers need a collection
of typical software developer demographics, which currently does not exist. Using a system-
atic literature review, one could collect published demographics about developers. Further,
authors of studies with software developers could be contacted and asked to provide basic
demographic information about their participants, if available. This information, together
with the data from the Stack Overflow developer surveys, would be a solid basis to assess
the external validity of future studies. Conferences and journals may recommend authors
to describe certain key demographics for published studies and reviewers could motivate
authors to explicitly address their sampling approach and effects on the generalizability of
their results.

We also pointed at ethical issues with some of the sampling techniques researchers cur-
rently employ. As mentioned above, we do not want to judge existing research and sampling
techniques, but we want to start a discussion that may lead to new ethical guidelines for
software engineering researchers.

The next step is to conduct a systematic literature review to collect published demograph-
ics about developers, employed sampling strategies, and reported sample sizes. Caine con-
ducted a similar literature review for user study samples in the CHI community [73]. The
data from such a review could be the starting point for a database which other researchers
can use to compare their sample to, as described above. One challenge for this data set could
be the different scales and categories for demographics such as work experience or software
development roles. However, in most cases, it should be possible to adjust and compare the
corresponding scales. Further, an analysis of the publication culture regarding which de-
mographics are reported and how sampling and potential biases are described may lead to
recommendations for researchers.

6 Chapter 6

Open Data: Building and
Maintaining the SOTorrent Dataset

“Open should be the default, not the exception.”

—Carl Malamud, Open Access Week (2014)

For all studies conducted in the context of this dissertation, we provide supplementary
material packages that enable other researchers to reproduce our results. Besides publish-
ing (anonymized) data on the preserved archive Zenodo, we also published the software and
scripts used to retrieve and analyze that data. Moreover, pre- or postprints of all papers
are available online. Beside these general open science efforts, in this chapter, we want to
particularly highlight the open dataset SOTorrent that we created to support future research
about code snippets on Stack Overflow. The dataset allows researchers to investigate and
understand the evolution of Stack Overflow content on the level of individual text and code
blocks, which is not possible with the official data dump that Stack Overflow provides. Beside
supporting our own research, we published and promoted the dataset to be used by other re-
searchers. Those efforts resulted in the dataset being selected as the official mining challenge
of the 16th International Conference on Mining Software Repositories (MSR 2019) [47].

The content of this chapter is based on two peer-reviewed publications: One full paper
describing the creation of SOTorrent and first analyses using the dataset [29] as well as our
accepted mining challenge proposal [47]. Moreover, we present additional analyses that we
conducted for an upcoming journal extension of our initial SOTorrent paper (see research
questions three and four).

Contributions:

• An open dataset that allows researchers to investigate and understand the evolution of
Stack Overflow posts and their relation to other platforms such as GitHub.

• A thorough evaluation of 134 string similarity metrics regarding their applicability for
reconstructing the version history of Stack Overflow text and code blocks.

• A first analysis of the evolution of content on Stack Overflow, including the description
of a close relationship between post edits and comments.

• An analysis of code clones on Stack Overflow together with an investigation of possible
licensing risks.

6.1 Introduction

Similar to other software artifacts such as source code files and documentation [80, 155, 207,
230], text and code snippets on SO evolve over time, e.g., when the SO community fixes bugs
in code snippets, clarifies questions and answers, and updates documentation to match new
API versions. Since the inception of SO in 2008, a total of 15.2 million SO posts have been

128 6 Open Data: Building and Maintaining the SOTorrent Dataset

edited after their creation—22,515 of them more than ten times. While many SO posts con-
tain code, the evolution of code snippets on SO differs from the evolution of entire software
projects: Most snippets are relatively short (on average 12 lines, see Section 6.6.1) and many
of them cannot compile without modification [369]. In addition, SO does not provide a ver-
sion control or bug tracking system for post content, forcing users to rely on the commenting
function or additional answers to voice concerns about a post.

Recent studies have shown that developers use SO snippets in their software projects, re-
gardless of maintainability, security, and licensing implications [1, 2, 13, 44, 140, 148, 367,
368, 370]. Assuming that developers copy and paste snippets from SO without trying to thor-
oughly understand them, maintenance issues arise. For instance, it may later be more diffi-
cult for developers to refactor or debug code that they did not write themselves. Moreover,
if no link to the SO post is added to the copied code, it is not possible to check the SO thread
for a corrected or improved solution in case problems occur. The same holds for code clones
within SO, which themselves may have been copied from external sources into SO posts.
These complicated relationships may not only lead to issues affecting the maintainability of
the code snippets on SO or their copies in software projects or documentation resources, but
also to licensing issues when people do not adhere to the license of the original content.

The SO data dump keeps track of different versions of entire posts, but does not contain
information about differences between versions at a more fine-grained level. In particular, it
is not trivial to extract different versions of the same code snippet from the history of a post to
analyze its evolution or compare code snippets between posts. To address these challenges,
we have created the open dataset SOTorrent [45], which enables researchers to analyze the
version history of SO posts at the level of whole posts and individual post blocks, and their
relation to corresponding source code in GitHub repositories. Beside describing how we
created that dataset, we use it to answer four research questions about the evolution of SO
posts:

RQ1 How do Stack Overflow posts evolve?

RQ2 Which posts get edited?

RQ3 Which edit and communication patterns exist?

RQ4 What are the implications of code clones on Stack Overflow?

While answering the first two questions will further our understanding of the phenomenon
of SO post evolution, the third question aims at finding a connection between post edits
and other events on the SO platform. The fourth question transfers a well-known software
engineering problem affecting the maintainability of software [188, 329] to code snippets on
Stack Overflow.

We found that SO posts grow over time in terms of their number of text and code blocks,
but the size of the individual blocks is relatively stable. Many edits (44.1%) just modify a
single line of text or code, but only in 6.1% of the cases are code blocks changed without
also changing text content; post edits usually happen shortly after the creation of the post.
Our research suggests that comments and post edits are closely related: Some comments
might trigger edits, others might be made in response to the edits. We investigated 213 edit
and comment events from 58 different SO posts and describe six edit and communication
patterns that we observed. Regarding the code clones, we used SOTorrent to detect them,
qualitatively investigated the source of 50 frequently copied snippets, and started a discus-
sion in the SO community about possible implications and strategies to handle code clones.

6.2 Dataset 129

Figure 6.1 – Exemplary Stack Overflow answers with code blocks (top, 3758880) and with inline code
(bottom, 4888400). The LocalId represents the position in the post.

6.2 Dataset

To answer our research questions, and to support other researchers in answering similar
questions, we build SOTorrent, an open dataset based on data from the official SO data
dump [310] and the Google BigQuery GitHub (GH) dataset [162]. SOTorrent provides access
to the version history of SO content at the level of whole posts and individual post blocks.
A post block can either be a text or a code block, depending on how the author formatted
the content (see Figure 6.1 for an example). Beside providing access to the version history,
the dataset links SO posts to external resources in two ways: (1) by extracting linked URLs
from text blocks and comments on SO and (2) by providing a table with links to SO posts
found in the source code of GitHub projects. This table can be used to connect SOTorrent
and GH datasets such as GHTorrent [164]. Our dataset is available on Zenodo as a database
dump [33], including instructions on how to import the dataset, and as a public BigQuery
dataset.1 We also published the source code of the software that we used to build [22, 35]
and analyze [24, 25] SOTorrent.

SOTorrent release 2018-08-28, for example, contains the version history of all 40,606,950
questions and answers in the official SO data dump published June 5, 2018 [310]. It con-
tains 63,914,798 post versions, 122,673,430 text block versions, and 77,578,494 code block
versions, ranging from the creation of the first post on July 31, 2008 until the last edit on June

1https://bigquery.cloud.google.com/dataset/sotorrent-org:2018_09_23

https://stackoverflow.com/a/3758880
https://stackoverflow.com/a/4888400
https://bigquery.cloud.google.com/dataset/sotorrent-org:2018_09_23

130 6 Open Data: Building and Maintaining the SOTorrent Dataset

Figure 6.2 – Connection of SOTorrent tables to other resources.

3, 2018. We extracted links to 11,775,659 distinct URLs from 20,518,181 different post block
versions and 4,104,869 distinct URLs from 6,856,777 different comments. Moreover, we iden-
tified 6,035,737 links to SO posts in 436,615 public GH repositories. Our project website2 lists
all dataset versions and contains more information on the database layout, including the
complete database schema. In the following sections, we provide information about SOTor-
rent’s data storage and collection process, before we use the dataset to answer our research
questions.

6.3 Database Schema

SOTorrent contains all tables from the official Stack Overflow data dump, published Decem-
ber 1, 2017 [310] (see database schema in Figure 6.3). Figure 6.2 visualizes how the SOTor-
rent tables are connected to the SO dump, external resources on the web, and projects on
GitHub. The official data dump only provides the version history at the level of whole posts as
Markdown-formatted text. To analyze how individual text or code blocks evolve, we needed
to extract individual blocks from that content. This extraction also enabled us to collect links
to external sources from the identified text blocks. In the SO dump, one version of a post
corresponds to one row in the table PostHistory. However, that table does not only doc-
ument changes to the content of a post, but also changes to metadata such as tags or title.
Since our goal was to analyze the evolution of SO posts at the level of whole posts and indi-
vidual post blocks, we had to filter and process the available data. First, we selected edits that
changed the content of a SO post, identified by theirPostHistoryTypeId [305] (2: Initial
Body, 5: Edit Body, 8: Rollback Body). We linked each filtered version to its predecessor and
successor and stored it in table PostVersion.

The content of a post version is available as Markdown-formatted text. We split the con-
tent of each version into text and code blocks and extracted the URLs from all text blocks
using a regular expression (table PostVersionUrl). We also extracted the URLs from all
comments in the SO data dump (table CommentUrl). Beside the extracted URLs, those
tables provide information about the link type (e.g., bare, Markdown, or HTML), link posi-

2http://sotorrent.org

http://sotorrent.org

6.3 Database Schema 131

B
ad
g
es

Id
 I

N
T(

11
)

U
se

rI
d

IN
T(

11
)

N
am

e
VA

R
CH

AR
(5

0)

D
at

e
D

AT
ET

IM
E

Cl
as

s
TI

N
YI

N
T(

4)

Ta
gB

as
ed

 T
IN

YI
N

T(
1)

In
d
ex
es

C
o
m
m
en
tU
rl

Id
 I

N
T(

11
)

Po
st

Id
 I

N
T(

11
)

Co
m

m
en

tI
d

IN
T(

11
)

Li
nk

Ty
pe

 V
AR

CH
AR

(3
2)

Li
nk

Po
si

tio
n

VA
R
CH

AR
(3

2)

Li
nk

An
ch

or
 T

EX
T

Pr
ot

oc
ol

 T
EX

T

R
oo

tD
om

ai
n

TE
XT

Co
m

pl
et

eD
om

ai
n

TE
XT

Pa
th

 T
EX

T

Q
ue

ry
 T

EX
T

Fr
ag

m
en

tI
de

nt
ifi

er
 T

EX
T

U
rl

TE
XT

Fu
llM

at
ch

 T
EX

T

In
d
ex
es

C
o
m
m
en
ts

Id
 I

N
T(

11
)

Po
st

Id
 I

N
T(

11
)

Sc
or

e
IN

T(
11

)

Te
xt

 T
EX

T

Cr
ea

tio
nD

at
e

D
AT

ET
IM

E

U
se

rD
is

pl
ay

N
am

e
VA

R
CH

AR
(4

0)

U
se

rI
d

IN
T(

11
)

In
d
ex
es

P
o
st
B
lo
ck
D
if
f

Id
 I

N
T(

11
)

Po
st

Id
 I

N
T(

11
)

Po
st

H
is

to
ry

Id
 I

N
T(

11
)

Lo
ca

lId
 I

N
T(

11
)

Po
st

Bl
oc

kV
er

si
on

Id
 I

N
T(

11
)

Pr
ed

Po
st

H
is

to
ry

Id
 I

N
T(

11
)

Pr
ed

Lo
ca

lId
 I

N
T(

11
)

Pr
ed

Po
st

Bl
oc

kV
er

si
on

Id
 I

N
T(

11
)

Po
st

Bl
oc

kD
iff

O
pe

ra
tio

nI
d

TI
N

YI
N

T(
4)

Te
xt

 T
EX

T

In
d
ex
es P
o
st
B
lo
ck
D
if
fO
p
er
at
io
n

Id
 T

IN
YI

N
T(

4)

N
am

e
VA

R
CH

AR
(5

0)

In
d
ex
es

P
o
st
B
lo
ck
T
yp
e

Id
 T

IN
YI

N
T(

4)

Ty
pe

 V
AR

CH
AR

(5
0)

In
d
ex
es

P
o
st
B
lo
ck
V
er
si
o
n

Id
 I

N
T(

11
)

Po
st

Bl
oc

kT
yp

eI
d

TI
N

YI
N

T(
4)

Po
st

Id
 I

N
T(

11
)

Po
st

H
is

to
ry

Id
 I

N
T(

11
)

Lo
ca

lId
 I

N
T(

11
)

Pr
ed

Po
st

Bl
oc

kV
er

si
on

Id
 I

N
T(

11
)

Pr
ed

Po
st

H
is

to
ry

Id
 I

N
T(

11
)

Pr
ed

Lo
ca

lId
 I

N
T(

11
)

R
oo

tP
os

tB
lo

ck
Ve

rs
io

nI
d

IN
T(

11
)

R
oo

tP
os

tH
is

to
ry

Id
 I

N
T(

11
)

R
oo

tL
oc

al
Id

 I
N

T(
11

)

Pr
ed

Eq
ua

l T
IN

YI
N

T(
1)

Pr
ed

Si
m

ila
rit

y
D

O
U

BL
E

Pr
ed

Co
un

t
IN

T(
11

)

Su
cc

Co
un

t
IN

T(
11

)

Le
ng

th
 I

N
T(

11
)

Li
ne

Co
un

t
IN

T(
11

)

Co
nt

en
t

TE
XT

In
d
ex
es

P
o
st
H
is
to
ry

Id
 I

N
T(

11
)

Po
st

H
is

to
ry

Ty
pe

Id
 T

IN
YI

N
T(

4)

Po
st

Id
 I

N
T(

11
)

R
ev

is
io

nG
U

ID
 V

AR
CH

AR
(6

4)

Cr
ea

tio
nD

at
e

D
AT

ET
IM

E

U
se

rI
d

IN
T(

11
)

U
se

rD
is

pl
ay

N
am

e
VA

R
CH

AR
(4

0)

Co
m

m
en

t
TE

XT

Te
xt

 M
ED

IU
M

TE
XT

In
d
ex
es

P
o
st
H
is
to
ry
T
yp
e

Id
 T

IN
YI

N
T(

4)

Ty
pe

 V
AR

CH
AR

(5
0)

In
d
ex
es

P
o
st
Li
n
ks

Id
 I

N
T(

11
)

Cr
ea

tio
nD

at
e

D
AT

ET
IM

E

Po
st

Id
 I

N
T(

11
)

R
el

at
ed

Po
st

Id
 I

N
T(

11
)

Li
nk

Ty
pe

Id
 T

IN
YI

N
T(

4)

In
d
ex
es

P
o
st
R
ef
er
en
ce
G
H

Id
 I

N
T(

11
)

Fi
le

Id
 V

AR
CH

AR
(4

0)

R
ep

oN
am

e
VA

R
CH

AR
(2

55
)

Br
an

ch
 V

AR
CH

AR
(2

55
)

Pa
th

 T
EX

T

Fi
le

Ex
t

VA
R
CH

AR
(2

55
)

Si
ze

 I
N

T(
11

)

Co
pi

es
 I

N
T(

11
)

Po
st

Id
 I

N
T(

11
)

Po
st

Ty
pe

Id
 T

IN
YI

N
T(

4)

SO
U

rl
TE

XT

G
H

U
rl

TE
XT

In
d
ex
es

P
o
st
T
yp
e

Id
 T

IN
YI

N
T(

4)

Ty
pe

 V
AR

CH
AR

(5
0)

In
d
ex
es

P
o
st
V
er
si
o
n

Id
 I

N
T(

11
)

Po
st

Id
 I

N
T(

11
)

Po
st

Ty
pe

Id
 T

IN
YI

N
T(

4)

Po
st

H
is

to
ry

Id
 I

N
T(

11
)

Po
st

H
is

to
ry

Ty
pe

Id
 T

IN
YI

N
T(

4)

Cr
ea

tio
nD

at
e

D
AT

ET
IM

E

Pr
ed

Po
st

H
is

to
ry

Id
 I

N
T(

11
)

Su
cc

Po
st

H
is

to
ry

Id
 I

N
T(

11
)

In
d
ex
es

P
o
st
V
er
si
o
n
U
rl

Id
 I

N
T(

11
)

Po
st

Id
 I

N
T(

11
)

Po
st

H
is

to
ry

Id
 I

N
T(

11
)

Po
st

Bl
oc

kV
er

si
on

Id
 I

N
T(

11
)

Li
nk

Ty
pe

 V
AR

CH
AR

(3
2)

Li
nk

Po
si

tio
n

VA
R
CH

AR
(3

2)

Li
nk

An
ch

or
 T

EX
T

Pr
ot

oc
ol

 T
EX

T

R
oo

tD
om

ai
n

TE
XT

Co
m

pl
et

eD
om

ai
n

TE
XT

Pa
th

 T
EX

T

Q
ue

ry
 T

EX
T

Fr
ag

m
en

tI
de

nt
ifi

er
 T

EX
T

U
rl

TE
XT

Fu
llM

at
ch

 T
EX

T

In
d
ex
es

P
o
st
s

Id
 I

N
T(

11
)

Po
st

Ty
pe

Id
 T

IN
YI

N
T(

4)

Ac
ce

pt
ed

An
sw

er
Id

 I
N

T(
11

)

Pa
re

nt
Id

 I
N

T(
11

)

Cr
ea

tio
nD

at
e

D
AT

ET
IM

E

D
el

et
io

nD
at

e
D

AT
ET

IM
E

Sc
or

e
IN

T(
11

)

Vi
ew

Co
un

t
IN

T(
11

)

Bo
dy

 T
EX

T

O
w

ne
rU

se
rI

d
IN

T(
11

)

O
w

ne
rD

is
pl

ay
N

am
e

VA
R
CH

AR
(4

0)

La
st

Ed
ito

rU
se

rI
d

IN
T(

11
)

La
st

Ed
ito

rD
is

pl
ay

N
am

e
VA

R
CH

AR
(4

0)

La
st

Ed
itD

at
e

D
AT

ET
IM

E

La
st

Ac
tiv

ity
D

at
e

D
AT

ET
IM

E

Ti
tle

 V
AR

CH
AR

(2
50

)

Ta
gs

 V
AR

CH
AR

(1
50

)

An
sw

er
Co

un
t

IN
T(

11
)

Co
m

m
en

tC
ou

nt
 I

N
T(

11
)

Fa
vo

rit
eC

ou
nt

 I
N

T(
11

)

Cl
os

ed
D

at
e

D
AT

ET
IM

E

Co
m

m
un

ity
O

w
ne

dD
at

e
D

AT
ET

IM
E

In
d
ex
es

T
ag
s

Id
 I

N
T(

11
)

Ta
gN

am
e

VA
R
CH

AR
(6

4)

Co
un

t
IN

T(
11

)

Ex
ce

rp
tP

os
tI

d
IN

T(
11

)

W
ik

iP
os

tI
d

IN
T(

11
)

In
d
ex
es

T
it
le
V
er
si
o
n

Id
 I

N
T(

11
)

Po
st

Id
 I

N
T(

11
)

Po
st

Ty
pe

Id
 T

IN
YI

N
T(

4)

Po
st

H
is

to
ry

Id
 I

N
T(

11
)

Po
st

H
is

to
ry

Ty
pe

Id
 T

IN
YI

N
T(

4)

Cr
ea

tio
nD

at
e

D
AT

ET
IM

E

Ti
tle

 T
EX

T

Pr
ed

Po
st

H
is

to
ry

Id
 I

N
T(

11
)

Pr
ed

Ed
itD

is
ta

nc
e

IN
T(

11
)

Su
cc

Po
st

H
is

to
ry

Id
 I

N
T(

11
)

Su
cc

Ed
itD

is
ta

nc
e

IN
T(

11
)

In
d
ex
es

U
se
rs

Id
 I

N
T(

11
)

R
ep

ut
at

io
n

IN
T(

11
)

Cr
ea

tio
nD

at
e

D
AT

ET
IM

E

D
is

pl
ay

N
am

e
VA

R
CH

AR
(4

0)

La
st

Ac
ce

ss
D

at
e

D
AT

ET
IM

E

W
eb

si
te

U
rl

VA
R
CH

AR
(2

00
)

Lo
ca

tio
n

VA
R
CH

AR
(1

00
)

Pr
of

ile
Im

ag
eU

rl
VA

R
CH

AR
(2

00
)

Ab
ou

tM
e

TE
XT

Vi
ew

s
IN

T(
11

)

U
pV

ot
es

 I
N

T(
11

)

D
ow

nV
ot

es
 I

N
T(

11
)

Ag
e

IN
T(

11
)

Ac
co

un
tI

d
IN

T(
11

)

Em
ai

lH
as

h
VA

R
CH

AR
(3

2)

In
d
ex
es

V
o
te
s

Id
 I

N
T(

11
)

Po
st

Id
 I

N
T(

11
)

Vo
te

Ty
pe

Id
 T

IN
YI

N
T(

4)

U
se

rI
d

IN
T(

11
)

Cr
ea

tio
nD

at
e

D
AT

ET
IM

E

Bo
un

ty
Am

ou
nt

 I
N

T(
11

)

In
d
ex
es

Fi
gu

re
6.

3
–

D
at

ab
as

e
sc

h
em

a
o

fS
O

To
rr

en
t

re
le

as
e

20
18

-0
8-

28
:

T
h

e
ta

b
le

s
fr

o
m

th
e

o
ffi

ci
al

SO
d

u
m

p
[3

05
]

ar
e

m
ar

ke
d

gr
ay

,t
h

e
ad

d
it

io
n

al
ta

b
le

s
ar

e
m

ar
ke

d
b

lu
e.

N
o

ta
ll

fo
re

ig
n

ke
y

co
n

st
ra

in
ts

ar
e

sh
ow

n
.

132 6 Open Data: Building and Maintaining the SOTorrent Dataset

tion (top, middle, or end of post/comment), and certain URL components such as the root
domain, query string, or fragment identifier (if present).

To reconstruct the version history of individual post blocks, we established a linear prede-
cessor relationship between the post block versions (table PostBlockVersion) using a
string similarity metric that we selected after a thorough evaluation (see Section 6.5.4). For
each post block version, we computed the line-based difference to its predecessor, which is
available in table PostBlockDiff. We also extracted the version history of question titles
from table PostHistory. Table TitleVersion links all title versions to their predeces-
sors and successors and further provides the corresponding Levenshtein distances (columns
PredEditDistance and SuccEditDistance).

One row in tablePostReferenceGH represents one link from a file in a public GH repos-
itory to a post on SO. To extract those references, we utilized Google BigQuery, which al-
lows to execute SQL queries on various public datasets, including a dataset with all files in
the default branch of GH projects [162]. To find references to SO, we again applied a reg-
ular expression and mapped all extracted URLs to their corresponding sharing link (end-
ing with /q/<id> for questions and /a/<id> for answers), storing that link together with
information about the file and the repository in which the link was found in table Post-
ReferenceGH. We ignored other links referring to, e.g., users or tags on SO.

6.4 Post Block Extraction

Our goal was to analyze the evolution of individual text and code blocks, for example to trace
changes to particular code snippets, to find code clones on SO, or to identify bug fixes for
code on SO. Moreover, the differentiation between the two post block types allowed us to ex-
tract links to external resources only from text blocks, not from code blocks. The latter may,
for example, contain XML namespace links or links to stylesheet files, which we do not con-
sider to be external sources of the post. The first step towards reconstructing the version his-
tory of individual post blocks is their extraction from the Markdown-formatted text that SO
uses for the content of posts. In our notion, a code block is not a short inline code fragment
embedded into a text block (see Figure 6.1 for an example), but a continuous code snippet.
We consider inline-code to be part of the surrounding text block. According to SO’s Mark-
down specification [311], code blocks are indented by four spaces and inline code is framed
by backtick characters. However, as we found during our research, users are free to use other
Markdown specifications or HTML tags, which are not officially supported, but correctly
parsed and displayed on the SO website. We iteratively tested and refined our post block
extraction approach using a random sample of over 100,000 SO posts (slarge). We ran the ex-
traction, randomly checked the extracted posts blocks, and added a new test case if the result
differed from the rendering on the SO website (class PostBlockExtractionTest [36]).
We then updated the extraction such that all test cases passed and re-ran the extraction
on the test data. The final version of our post block extraction method was able to detect
various notations that SO authors used to mark code blocks, including SO Markdown (in-
dented by 4 spaces), code fencing Markdown (enclosed by three backticks), SO stack snip-
pets (enclosed by <!-begin/end snippet->), stack snippet language tags (prepended
by <!-language:...->), HTML code tags (enclosed by <pre><code>), and HTML
script tags (enclosed by <script>).

6.5 Post Block Matching 133

6.5 Post Block Matching

After successfully extracting the post blocks from a post version, we had to map the extracted
post blocks to their predecessors in the previous post version to reconstruct their version his-
tory. Since this mapping had to work for text and code content, the latter in various program-
ming languages, we decided to utilize syntax-based similarity metrics. We implemented 134
different string similarity metrics (see Section 6.5.1), which we evaluated regarding their cor-
rectness and performance using the manually validated version history of 600 SO posts (see
Sections 6.5.2 and 6.5.4). In case of multiple matches, we had to choose between different
predecessor candidates. Thus, we developed a matching strategy that considers the location
and context of a post block (see Section 6.5.3).

6.5.1 Similarity Metrics

A similarity metric maps two input strings to a value in [0,1], where 0 corresponds to inequal-
ity and 1 corresponds to equality. We implemented five different types of similarity metrics:
edit-based metrics (e.g., Levenshtein), set-based metrics (e.g., n-grams with Jaccard coeffi-
cient), profile-based metrics (e.g, cosine similarity), fingerprint-based metrics (Winnowing),
and equality-based metrics, which served as a baseline in the metrics evaluation (see Sec-
tion 6.5.4). Our Java implementation of all metrics is available on GitHub [36]. Table 6.1
shows all metrics that we implemented and evaluated.

The edit-based metrics define the similarity of two strings based on the number of edit op-
erations needed to transform one string into the other. Optimal string alignment (OA) allows
the two operations ‘insertion of one character’ and ‘deletion of one character’. The Leven-
shtein distance further allows ‘substitution of one character’. The Damerau-Levenshtein dis-
tance is similar to Levenshtein, but additionally allows the operation ‘swap two neighboring
characters’. The longest common subsequence (LCS) of two strings is the longest sequence
of characters (order irrelevant) that can be found in both strings. It can be interpreted as
a variant of Damerau-Levenshtein with the additional restriction that each character can
only be modified once (e.g., swapping two characters and then replacing one of them is not
possible). To derive a similarity metric from the number of edit operations and the longest
common subsequence, we used the following approaches:

Definition 6.5.1 (Edit/LCS Similarity). Let S1, S2 be two strings, d be the edit distance and
LCS be the longest common subsequence between the two strings: (S1,S2) → R+

0 . The edit-
based and the LCS-based similarity functions simedit and simLCS : (S1,S2) → [0,1] are then
defined as

simedit (S1,S2) = max (|S1|, |S2|)−d (S1,S2)

max (|S1|, |S2|)
simLCS (S1,S2) = LCS (S1,S2)

max (|S1|, |S2|)
The profile-based metrics consider each distinct token, n-gram, or n-shingle in the two

input strings as one dimension of a vector space. Tokens can be extracted from a string
by a tokenization with whitespaces as delimiter, n-grams split the string in sequences of
n consecutive characters, n-shingles split the string in sequences of n consecutive words
or tokens. One input string is then characterized as one vector in the vector space. In the

134 6 Open Data: Building and Maintaining the SOTorrent Dataset

Table 6.1 – Overview of all evaluated similarity metrics (n = 134).

Type Metric Variants

edit
levenshtein

with/without normalization
damerauLevenshtein
longestCommonSubsequence (LCS)
optimalAlignment (OA)

set

nGramJaccard nGram : n ∈ {2,3,4,5}
nShingle : n ∈ {2,3}
with/without normalization
with/without padding (nGram)

nGramDice
nGramOverlap
tokenJaccard
tokenDice
tokenOverlap
nShingleJaccard
nShingleDice
nShingleOverlap

profile

cosineNGramBool nGram : n ∈ {2,3,4,5}
nShingle : n ∈ {2,3}
with normalization (both)
without normalization (cosine)

cosineNGramTF
cosineNGramNormalizedTF
cosineNShingleBool
cosineNShingleTF
cosineNShingleNormalizedTF
cosineTokenBool
cosineTokenTF
cosineTokenNormalizedTF
manhattanNGram
manhattanNShingle
manhattanToken

fingerprint
winnowingNGramJaccard nGram : n ∈ {2,3,4,5}

with/without normalizationwinnowingNGramDice
winnowingNGramOverlap
winnowingNGramLCS
winnowingNGramOA

equal equal with/without normalization
tokenEqual

6.5 Post Block Matching 135

Version count of Stack Overflow Q&A (n=36,062,267)

Edited Posts (35.9%)

1 2 3 4 5 6 7 8 9 ≥ 10

0

5m

10m

15m

20m

25m

Figure 6.4 – Histogram and boxplot showing the number of Stack Overflow questions and answers
with a certain version count (PostHistoryTypeIds 2, 5, 8); based on the SO data dump 2017-06-12;
vertical line is median.

simplest form (bool), the values of the dimensions can either be 1 (token, n-gram, or n-
shingle present in the string) or 0 (not present). Alternatively, one can consider the number
of occurrences of each token, n-gram, or n-shingle as the value of the dimensions (term
frequency). We also considered the BM15 weighting scheme (k = 1.5) [219], which intends
to lower the effect of very frequent terms skewing the comparison. The similarity of the two
strings is then defined as the cosine or Manhattan distance between the two vectors that
have been derived from the strings using one of the three approaches described above.

For the set-based metrics, we considered all distinct tokens, n-grams and n-shingles in the
strings as elements of sets. We used three coefficients to compare the resulting sets:

Definition 6.5.2 (Similarity Coefficients). Let S1, S2 be sets of tokens, n-grams, or n-shingles.

Jaccard (S1,S2) = |S1 ∩S2|
|S1 ∪S2|

Dice (S1,S2) = 2 · |S1 ∩S2|
|S1|+ |S2|

Overlap (S1,S2) = |S1 ∩S2|
min (|S1|, |S2|)

The fingerprint-based metrics apply a hash function to substrings of the input strings and
then use the computed hash values to determine the similarity. The Winnowing algorithm
is one approach to calculate and compare the fingerprints of two strings [122, 283]. Win-
nowing is often used for plagiarism detection, e.g., in the source code comparison soft-
ware MOSS [72, 202, 222]. We implemented different variants of the algorithm described
by Schleimer et al. [283], e.g., using different n-grams sizes and different approaches to com-
pare the fingerprints.

136 6 Open Data: Building and Maintaining the SOTorrent Dataset

Figure 6.5 – App developed to create ground truth for similarity metric evaluation: Text blocks are
marked with blue color, code blocks with orange color, deleted lines are red, added lines are green.

We implemented each metric in different variations. In the variants with normalized in-
put strings, we used different approaches for different metric types: For the edit metrics,
we unified the whitespace characters, i.e., reduced them to a single space, and converted all
characters to lower case. For the n-gram metrics, we converted all characters to lower case,
removed all whitespace, and removed some special characters ({};) (see Section 6.5.5 for
the characters we later added to this set). For the shingle metrics, we again converted all
characters to lower case, unified the whitespace characters, and removed all non-word char-
acters ([ˆa-zA-Z_0-9]). We used common n-gram and shingle sizes [72] and also imple-
mented an optional n-gram padding that emphasizes the beginning and the end of the input
strings. All these variations lead to a total number of 134 different similarity metrics.

6.5.2 Ground Truth

To evaluate the correctness of the post block mappings retrieved using different string sim-
ilarity metrics, we created a set of 600 manually validated post version histories. Figure 6.5
shows a screenshot of the tool we developed to create those manually validated histories
(available on GitHub [118]). It visualizes a post version (right) and its predecessor (left). Post
blocks with equal content and type that are unique in the two versions are automatically con-
nected. For the other post blocks, the user has to choose a match by clicking on a post block
of the same type in each version; the tool then visualizes the line-based difference between
the connected blocks. It is also possible to add comments for individual post blocks, e.g.,
in case the user is not confident in his or her mapping, or in case the post block extraction
failed.

We drew four different samples from the SO data dump released June 12, 2017. The first
sample with 200 posts (srand) was randomly drawn from all SO questions and answers with at
least two versions (otherwise no mapping is needed). Since there are many posts with only

6.5 Post Block Matching 137

Figure 6.6 – Post with multiple equal predecessors (13064858).

two versions (see Figure 6.4), we decided to draw another sample of 200 posts from SO ques-
tions and answers with at least seven versions (99% quantile). We denote this sample srand+.
As the initial focus of our research was on Java, we also drew a sample with 200 Java posts
(sjava) from all SO questions tagged with <java> or <android>, and the corresponding
answers. The last sample (smult), which contains 100 posts with multiple possible prede-
cessors, was not used to evaluate the metrics, but to evaluate our matching strategy (see
Section 6.5.3). In this sample, we included posts which had at least two possible matches
(two post blocks of the same type with identical content) in two adjacent versions.

The validated version histories of the samples were created by a graduate student, and
then later discussed with two of the authors. The student was introduced to the app and told
to comment on all post blocks where he is not sure about the mapping. Together, we looked
at all post blocks with comments indicating an unclear mapping (n = 38) and tried to find
a mapping we all agreed on. If that was not possible, we moved the post to a new sample
sunclear, which we separately analyzed. After discussing all 38 posts, sunclear contained 17
posts (4 from srand, 8 from srand+, and 5 from sjava). All samples are available on Zenodo [41].

6.5.3 Matching Strategy

Our goal was to establish a linear predecessor relationship for all post block versions, thus
each post block version can only have one predecessor. The reason for this decision was the
fact that we rarely observed splits and merges in the post version histories we manually an-
alyzed. Moreover, even if multiple predecessors have equal or similar content, usually only
one of them is the actual predecessor (see Figure 6.6 for an example). To correctly choose the
predecessor from different candidates, we had to develop a matching strategy for post block
versions, which we present in this section. In the database, we not only store the matched

https://stackoverflow.com/posts/13064858/revisions

138 6 Open Data: Building and Maintaining the SOTorrent Dataset

predecessor, but also the number of possible predecessors and successors, to be later able to
identify post version histories that could contain splits or merges. For our analysis (see Sec-
tion 6.6), we consider post block lifespans, i.e., chains of connected post block versions that
are predecessors of each other. Those lifespans can be easily retrieved from the database,
because each post block version has a RootPostBlockVersionId, which is the id of
the first post block version in the chain. Those chains can likewise be retrieved using the
columnsRootPostHistoryId andRootLocalId, which also uniquely identify the first
post block version in a post block lifespan.

As mentioned above, we utilized a dedicated sample smult to evaluate how well our match-
ing strategy can handle posts with multiple possible connections. In case of differences be-
tween the ground truth and the results of our approach, we wrote unit tests replicating the
issue and then updated the strategy until all unit tests passed. We further used the sample
slarge to test the strategy’s scalability. To be able to describe our matching strategy, we define
our notation for post versions, post block versions, and possible predecessors:

Definition 6.5.3 (Post Version). Let p be a post with n versions. Then pi denotes one post
version and |pi | denotes the number of post blocks in pi for i ∈ {1 . . .n}.

Definition 6.5.4 (Post Block Version). Let pi be one post version and τ ∈ {text, code} be a post
block type. Then bτ(i ,l) denotes one post block of type τ with local id l for l ∈ {1 . . . |pi |}. The
function i dτ : pi → {1 ≤ l ≤ |pi |} maps a post version to the local ids of the post blocks of type
τ in that version.

Definition 6.5.5 (Possible Predecessors). Let bτ(i−1,l), bτ(i , j) be post blocks of the same type in
subsequent post versions,

equal (bτ(i−1,l),bτ(i , j)) → {true, false}

be a function that tests if the post blocks’ contents are equal, and

simτ(bτ(i−1,l),bτ(i , j)) → [0,1]

be the similarity of the two post blocks’ contents according to the similarity metric simτ. Let
ϑτ ∈ [0,1] be a threshold for simτ. Then, we define the set of equal predecessors as

PredEqual (bτ(i , j)) = {βτ(i−1,k) | equal (βτ(i−1,k),bτ(i , j)) = true,

k ∈ i dτ(pi−1), j ∈ i dτ(pi)}

We define the maximum predecessor similarity as

maxSimτ = max ({simτ(βτ(i−1,k),bτ(i , j)) | simτ ≥ϑτ,

k ∈ i dτ(pi−1), j ∈ i dτ(pi)})

In case no predecessor with a similarity above the threshold exists, we define maxSimτ(;) =
0. We define the set of matched predecessors as

PredMatched (bτ(i , j)) = {βτ(i−1,k) | simτ(βτ(i−1,k),bτ(i , j)) = maxSimτ,

maxSimτ > 0,

k ∈ i dτ(pi−1), j ∈ i dτ(pi)}

6.5 Post Block Matching 139

Finally, we define the set of possible predecessors as

Pred (bτ(i , j)) =
{

PredEqual (bτ(i , j)), if PredEqual (bτ(i , j)) 6= ;,

PredMatched (bτ(i , j)), if PredEqual (bτ(i , j)) =;.

The set of possible successors Succ (bτ(i , j)) is defined analogously.

As can be seen in the above definition, we need two different similarity metrics (simtext

and simcode) and two different similarity thresholds (ϑtext and ϑcode). We only compute the
similarity if the content of the post blocks is not equal, because we want to be able to distin-
guish equal post block versions from post block versions with similarity 1 according to the
metric. Before we describe our matching strategy, we present two methods that we use in
case of multiple possible predecessors. Both methods iterate over all post blocks bτ(i , j) in a
post version p2≤i≤n that do not have a predecessor yet. They follow different strategies for
selecting a predecessor:

setPredContext (pi ,BOTH) tries to select a predecessor using the post blocks before and
after bτ(i , j), i.e., the blocks with local ids j −1 and j +1. Please note that those blocks usually

have a different post block type than bτ(i , j). In case the predecessors of those neighboring

blocks are already set and one post block bτ(i−1,l) ∈ Pred (bτ(i , j)) has the predecessors of those

two post blocks as neighbors (local ids l−1 and l+1 in version pi−1), the function sets bτ(i−1,l)
as predecessor of bτ(i , j) and returns true. If no predecessor has been set, it returns false. In
case of parameter ABOVE, only the post block above (local id j −1) is taken into account; in
case of parameter BELOW, only the post block below (local id j + 1) is taken into account.
Examples for posts that motivated this strategy are answer 32841902 (mapping of version 2
to 1) and answer 37196630 (mapping of version 2 to 1).

setPredPosition (pi) sets the post block bτ(i−1,l) ∈ Pred (bτ(i , j)) with∆pos = min (|l− j |), i.e., the

post block with the local id closest to j , as predecessor of bτ(i , j). If two possible predecessors
have the same ∆pos, the method chooses the one with the smallest local id. This approach
is based on our observation that the order of post blocks rarely changes (see Section 6.6.1).
Examples for posts that motivated this strategy are question 18276636 (mapping of version 2
to 1) and answer 2581754 (mapping of version 3 to 2).

The complete matching strategy that selects (at most) one predecessor for each post block
in a post version can be found as pseudo code in Algorithm 1. The actual source code can be
found in method processVersionHistory of class PostVersionList in the corre-
sponding GitHub project [35].

6.5.4 Metrics Evaluation

The matching strategy described above depends on the results of the similarity metrics simtext

and simcode and the thresholds ϑtext and ϑcode. To select the best metrics for reconstructing
the version history of post blocks, we evaluated all 134 metrics in different combinations
with different thresholds using our ground truth samples srand, srand+, and sjava. Please note
that the correctness of simtext and simcode cannot be evaluated independently, because the
neighboring post blocks that setPredContext takes into account usually have different types.
To assess the performance, we measured the runtime of the post history extraction for each
configuration. To assess the correctness of the extracted post block history, we regarded

https://stackoverflow.com/posts/32841902/revisions
https://stackoverflow.com/posts/37196630/revisions
https://stackoverflow.com/posts/18276636/revisions
https://stackoverflow.com/posts/2581754/revisions

140 6 Open Data: Building and Maintaining the SOTorrent Dataset

Algorithm 1 Initial Matching Strategy

for all p2≤i≤n do
// set predecessors where only one candidate exists
for all bτ(i ,1≤ j≤|pi |) do

if |Pred (bτ(i , j))| = 1 then
Let pred be the equal or similar predecessor
if |Succ (pred)| = 1 then

Set pred as predecessor of bτ(i , j)
continue

end if
end if

end for
// set predecessors using context
predSet = true
while predSet do

predSet = setPredContext (pi ,BOTH)
end while
while predSet do

predSet = setPredContext (pi ,BELOW)
end while
while pr edSet do

predSet = setPredContext (pi ,ABOVE)
end while
// set predecessors using position
setPredPosition (pi)

end for

6.5 Post Block Matching 141

each metric configuration as a binary classifier that either assigns the predecessor of a post
block version correctly or not (compared to the ground truth). To calculate the number of
true/false positives/negatives, we consider the set of predecessor connections, i.e., all (bτ(i−1,l),
bτ(i , j)) from p2≤i≤n that have been connected with a certain metric configuration. We then
compare those connections with the connections from the ground truth:

Definition 6.5.6 (Metric Evaluation). Let GTτ be the set of predecessor connections of type
τ in the ground truth, Cτ be the set of predecessor connections of type τ determined using a
certain metric configuration, and nτ

pos =
∑

2≤i≤n |i dτ(pi)| be the number of possible prede-
cessor connections of type τ. We define the number of true positives tpτ, false positives fpτ,
true negatives tnτ, and false negatives fnτ as:

tpτ = |C∩GT| fpτ = |C \ GT|
tnτ = nτ

pos −|C∪GT| fnτ = |GT \ C|

After each comparison run, we ranked the configurations according to their Matthews cor-
relation coefficient (MCC) [223], which takes tpτ, fpτ, tnτ, and fnτ into account. If two con-
figurations had the same MCC value, we ranked them according to their runtime. MCC
is the preferred measure when evaluating binary classifiers [86] and should be chosen over
evaluation measures such as recall, precision, or F-measure [260]. In our case, it correlates
the connections from the ground truth and the connections set by a certain metric config-
uration. The MCC values are in range [−1,1]; a total disagreement is represented by −1, a
perfect agreement by 1. The source code of the tool we used for the metrics evaluation is
available on GitHub [34].

For the first comparison run was, we chose the following parameters:

si mtext = si mcode

ϑ{text, code} ∈ {0.0,0.1,0.2, . . . ,1.0}

This resulted in 1,474 different configurations. The first run took about 24 hours on a reg-
ular desktop PC (Intel Core i7-7700, 64 GB RAM, 512 GB SSD).

For the second run, we selected the metrics which, for a particular threshold, achieved
an MCC value in the 95% quantile of all three samples either for text or for code blocks.
Some metrics cannot be applied to very short strings (e.g., if string length < n-gram size).
For the final implementation, we wanted to have a backup metric that works for all input
strings. We filtered edit- and token-based metrics and selected the best candidates according
to the criterion described above. Finally, we selected 27 regular and 4 backup metrics for the
second run. We also added the equal metric as a baseline. We tested those metrics again
with si mtext = si mcode, but this time we chose ϑ{text, code} ∈ {0.0,0.01,0.02, . . . ,1.0} Thus, the
second run tested 3,232 different configurations, which took about 20 hours.

As motivated above, the results of the text and code metrics depend on each other. In
the third and last run, we tested all combinations of the best (99% quantile) text and code
configurations together with the best backup configurations. This was the first run with
simtext 6= simcode and with a backup metric for text and code blocks. Those backup met-
rics were only used if the input strings were too short for the configured metrics. The run,
which took about 14 hours, tested all combinations of 13 text configurations, 3 text backup

142 6 Open Data: Building and Maintaining the SOTorrent Dataset

configurations, 15 code configurations, and 2 code backup configurations, resulting in 1,170
combinations in total. For the final selection, we ranked the combinations according to the
sum of their MCC scores for text and code blocks. The selected configuration was:

simtext = manhattanFourGramNormalized (ϑtext = 0.17)
simcode = winnowingFourGramDiceNormalized (ϑcode = 0.23)
simtext

backup = cosineTokenNormalizedTermFrequency (ϑtext = 0.36)

si mcode
backup = cosineTokenNormalizedTermFrequency (ϑcode = 0.26)

Figure 6.7 shows the performance of the selected metrics for different thresholds with
simtext = simcode, compared to the baseline metric equals. The final configuration achieved
an MCC value of 0.86 for text (true positive rate 0.99, false positive rate 0.14) and 0.92 for
code (true positive rate 0.99, false positive rate 0.07).

6.5.5 Analysis of False Positive and False Negative Predecessor
Matches

While the performance of our matching strategy together with the selected metrics was al-
ready good, we were eager to further reduce the number of false positives and negatives.
Therefore, we added a feature to our ground truth application that enabled us to display the
difference between the ground truth and the mapping that our matching strategy with the
default metrics produced (see Figure 6.8 for an example). The source code of this revised
application is available on GitHub [119]. We then systematically investigated all 31 posts
with false positive or negative code block mappings, and then followed a similar approach
as before to improve our matching strategy: First, we decided whether an improved match-
ing strategy could solve the observed matching problem and in case we agreed that it could,
we created a test case reproducing the error. This systematic approach lead to different im-
provements to the post block extraction, the matching strategy, and the default similarity
metrics, which we outline below.

In the end, we were able to solve the matching problem for 30 out of 31 posts. In one
post, the predecessor assignment in the ground truth was semantically correct, but syntac-
tically too different to be detectable using our approach. In 14 cases, we (also) updated the
ground truth because we considered the metric-based mapping to be more appropriate. Af-
terwards, we applied the same systematic approach to check the 62 posts with false positives
or negatives in text blocks. We noticed that the changes we implemented based on the code
block errors also considerably improved the results for text blocks. For 16 posts, our updated
matching strategy removed the false positive and the false negative matches. Only in 8 text
block version comparisons, our strategy was not able to achieve the mapping described in
the ground truth, because the predecessor assignment of the text blocks was semantically
correct, but syntactically too different to be detectable using our approach. We updated the
ground truth of 41 posts where we considered the metric-based mapping to be more appro-
priate. Considering all 83 distinct posts with false positive or false negative matches for either
code or text blocks, only eight of them (9.6%) could not be correctly matched by our revised
matching strategy due to the difference between semantic and syntactical difference. In all
other cases, either the revised matching strategy resolved the issues or the ground truth had

6.5 Post Block Matching 143

●●●
●●●●●●●●●

●
●●●

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

Performance of selected metrics

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●
●●
●
●●●
●
●
●
●
●
●

●

●

●

●

●

●

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

●

●●

equal
text

●

●

●●

equal
code

●

ϑ
code

 = 0.0

ϑ
code

 = 1.0

ϑ
text

 = 0.0

ϑ
text

 = 1.0

Figure 6.7 – Performance of selected metrics: manhattanFourGramNormalized for text (blue) and
winnowingFourGramDiceNormalized for code (red); selected thresholds: 0.17 for text and 0.23 for
code (dotted lines).

Figure 6.8 – Visualization of an issue with previous matching strategy in case the equal match was
not available anymore. This example visualizes the situation between versions 6 and 7 of question
17158055. The orange connections visualize the ground truth, the gray line visualizes the connection
set by the previous matching strategy in combination with the selected default metrics. The connec-
tion between code block C’ in version 6 and C in version 7 is missing, because C has an equal match
in the previous version, but this match is not available anymore. C’ in version 6 is very similar, but
not equal to C in versions 6 and 7.

https://stackoverflow.com/q/17158055

144 6 Open Data: Building and Maintaining the SOTorrent Dataset

to be adjusted (dataset available on Zenodo [41]). Our next step will be to re-run the com-
plete metrics evaluation (Section 6.5.4) to see if, with our revised matching strategy, adjusted
thresholds or different metrics yield even better results.

6.5.6 Revised Matching Strategy and Post Block Extraction

To address the observed issues, we first changed the post block extraction to also detect code
blocks that are formatted as inline code, but are the only content in a line and thus displayed
as code blocks. We further updated the default similarity metrics as follows: We unified the
normalization for edit- and n-gram-based metrics and extended the set of special charac-
ters by adding colons, commas, and periods. The reason for this was that simtext

backup yielded
a similarity of 0.0 for the strings “to” and “to:”, because they were two different tokens, even
after normalization. We noticed this when checking the false negative matches in question
38463455 between versions 3 and 4. In the same post, we further observed a case were the
Winnowing algorithm did not trigger the backup metric correctly in case one of the input
strings was too short for the configured window size. We fixed this to resolve the correspond-
ing false negative.

The changes to the matching strategy were more complex. One of the main issues was that
we only considered equal predecessors or predecessors with maximum similarity as possible
predecessors. However, those predecessor candidates may not be available anymore at the
time our algorithm reaches a certain post block. Figure 6.8 shows an exemplary false nega-
tive match caused by this behavior. The connection between code blocks C’V6 and CV7-1 is
missing, because CV7-1 has an equal match in the previous version (CV6) that is not avail-
able anymore at the time the algorithm tries to set the predecessor. Code block C’V6 is very
similar to code blocks CV7-1 and CV7-2, but not equal. Thus, the set of possible predeces-
sors Pr ed(CV7-1) only contains CV6, but not C ′v6. We updated the matching strategy as
follows to address the above-mentioned issue:

Definition 6.5.7 (Runner-up Predecessors). Let bτ(i−1,l), bτ(i , j) be post blocks of the same type
in subsequent post versions and

available (bτ(i−1,l)) → {true, false}

be a function that tests if a post block is still available, meaning that it has not been assigned
as predecessor of a post block in the succeeding version yet. simτ, ϑτ, maxSimτ, and i dτ

have already been defined above.
We define the set of runner-up predecessors as

PredRunnerUp (bτ(i , j)) = {βτ(i−1,k) | available (βτ(i−1,k)) = tr ue

∧ simτ(βτ(i−1,k),bτ(i , j)) ∈ [ϑτ,maxSimτ),

k ∈ i dτ(pi−1), j ∈ i dτ(pi)}

We define the best runner-up match as

BestRunnerUp (bτ(i , j)) =

{bτ(i−1,k)} if @ bτ(i−1,l) ∈ PredRunnerUp (bτ(i , j)) :

simτ(bτ(i−1,l)) > simτ(bτ(i−1,k)),

k, l ∈ i dτ(pi−1), k 6= l , j ∈ i dτ(pi),

;, else.

https://stackoverflow.com/posts/38463455/revisions

6.5 Post Block Matching 145

Using the above definitions, we can now define a new matching strategy that handles the
case in which the optimal match is not available anymore:

setPredRunnerUp (pi) sets the post block bτ(i−1,k) ∈ BestRunnerUp (bτ(i , j)) if |Succ (bτ(i−1,k))| =
0. Please note that the successor set of bτ(i−1,k) is empty, because the selected post block did
not have the maximum predecessor similarity for any of the post blocks in the succeeding
version. If BestRunnerUp (bτ(i , j)) =;, the strategy does not set any predecessors.

Algorithm 2 shows the complete revised matching strategy (new parts are marked by a
corresponding comment). We use the new setPredRunnerUp matching strategy twice in the
algorithm: At the beginning in case a unique match is not available anymore and in the end
after all other strategies were not able to set a predecessor.

Algorithm 2 Revised Matching Strategy

for all p2≤i≤n do
// set predecessors where only one candidate exists
for all bτ(i ,1≤ j≤|pi |) do

if |Pred (bτ(i , j))| = 1 then
Let pred be the equal or similar predecessor
if available (pred) then // new

if |Succ (pred)| = 1 then
Set pred as predecessor of bτ(i , j)
continue

end if
else// new

setPredPositionRunnerUp (pi) // new
end if

end if
end for
// set predecessors using context
predSet = true
while predSet do

predSet = setPredContext (pi ,BOTH)
end while
while predSet do

predSet = setPredContext (pi ,BELOW)
end while
while predSet do

predSet = setPredContext (pi ,ABOVE)
end while
// set predecessors using position
setPredPosition (pi)
// set runner-up predecessors for the remaining post blocks
setPredPositionRunnerUp (pi) // new

end for

146 6 Open Data: Building and Maintaining the SOTorrent Dataset

6.6 Evolution of Stack Overflow Posts

After describing how we reconstructed the version history for individual text and code blocks,
we come back to our initial research questions. We first characterize the phenomenon of SO
post evolution, and in particular the evolution of individual post blocks (RQ1). To find out
if edited posts share common characteristics, we analyzed if certain measures such as score
or number of comments correlate with the number of edits (RQ2). We also investigated if
those measures have a temporal relationship with the edits, in particular if comments hap-
pen immediately before or after edits and whether their relationship follows patterns (RQ3,
see Section 6.7). Finally, we utilized SOTorrent to analyze code clones on SO (RQ4, see Sec-
tion 6.8).

As descriptive statistics, we use mean (M), standard deviation (SD), median (Mdn), in-
terquartile range (IQR), and the first and third quartiles (Q1, Q3). To test for significant dif-
ferences, we applied the nonparametric two-sided Wilcoxon rank-sum test [363] and report
the corresponding p-value (pw). To measure the effect size, we used Cohen’s d [93, 150].
Our interpretation of d is based on the thresholds described by Cohen [94]: negligible effect
(|d | < 0.2), small effect (0.2 ≤ |d | < 0.5), medium effect (0.5 ≤ |d | < 0.8), otherwise large effect.
We used the nonparametric Spearman’s rank correlation coefficient (ρ) [303] to test the sta-
tistical dependence between two variables. Our interpretation of ρ is based on Hinkle et al.’s
scheme [179]: low correlation (0.3 ≤ |ρ| < 0.5), moderate correlation (0.5 ≤ |ρ| < 0.7), high
correlation (0.7 ≤ |ρ| < 0.9), and very high correlation (0.9 ≤ |ρ| ≤ 1).

6.6.1 Quantitative Analysis

In the following, we describe different properties of post blocks and post block versions ei-
ther for their most recent version in the SOTorrent release 2018-02-16, or for different ver-
sions over time:

Post Block Count: Half of all posts in the SOTorrent dataset contain between one and two
text blocks and between zero and two code blocks (Q1,3). There are only few posts without
text blocks (1.0%), but over a third of all posts do not have code blocks (36.6%). Examples for
such posts include conceptual questions and answers, but also posts with inline code that
we considered to be part of the text blocks. If we compare the first and the last version of
edited posts, we can observe a statistically significant difference in the number of text and
code blocks (ptext, code

w < 2.2e−16); posts tend to grow over time. However, the effect is only
small (d text = 0.21, d code = 0.23).

Post Block Length: Code blocks tend to be larger than text blocks. Figure 6.9 visualizes
the difference measured in number of lines. The average text block contains 2.5 lines (Mdn =
2, SD = 3.1) and 247.5 characters (Mdn = 153, SD = 319.1); the average code block contains
12.0 lines (Mdn = 5, SD = 23.4) and 455.9 characters (Mdn = 194, SD = 989.3). We compared
the length of post blocks in the first and the last version and found no effect. Thus, we can
conclude that posts tend to become longer over time in terms of their number of post blocks,
but the length of individual post blocks is relatively stable.

6.6 Evolution of Stack Overflow Posts 147

co
de

te
xt

0 5 10 15 20 25 30

Length of post blocks in lastest version

Li
ne

 c
ou

nt

Figure 6.9 – Boxplots showing the line count of text and code blocks in the latest version of Stack
Overflow posts (n = 69,940,599 for text and n = 42,568,011 for code).

Post Block Versions: For our analysis of post block versions, we retrieved all post block
lifespans in the dataset, but only considered the initial versions and later versions where
the content of the blocks changed (not all blocks are edited in all versions). We found that
about half of all post blocks were edited after their creation (see Figure 6.10). On average,
text blocks have 4.8 and code blocks 4.1 versions. We analyzed the line-based differences
between post block versions and found that 44.1% of all edits modify only one line (47.7% for
text blocks and 34.9% for code blocks). There is a significant difference in the size of changes
when comparing text and code blocks (pw < 2.2e−16) with a medium effect (d = 0.51 for the
number of added lines and d = 0.57 for the number of deleted lines): Changes in code blocks
are larger, which is expectable due to the larger size of code compared to text blocks.

Post Block Co-change: We were also interested in the co-change of text and code blocks,
i.e., if text and code is edited together. On average, 1.5 text blocks and 0.9 code blocks were
edited in each post version (Mdn = 1 and SD = 1.1 for both types). We found that text and
code blocks were either edited together (49.3% of all post versions), or just the text blocks
were edited (44.6%). Only in 6.1% of all post versions, code blocks were changed without
also editing text blocks. This could indicate that SO authors document changes to their code
snippets in the text blocks or update the description of the modified code.

Order of Post Blocks: To check our assumption that the order of post blocks rarely changes,
we computed the difference between the local ids of all post blocks versions and their pre-
decessors. We found that 95.5% of all post block versions have the same local id as their
predecessor. Of all absolute differences, two was the most common one (3.1%), which is ex-
pectable, because text and code blocks usually alternate. Thus, e.g., swapping two blocks of
the same type leads to a local id difference of two in the next version.

Timespan Between Edits: For the posts that have been edited after their creation, we
analyzed the timespan between the edits. 80.6% of the first post edits happen on the same
day as the creation of the post, 4.6% within one week (>1 and ≤7 days), 5.1% within one year
(>7 and ≤365 days), and 9.7% more than one year after the creation. If we only consider the
second or later edits, not much changes: 74.2% of them happen on the same day, 6.2% within
one week, 7.9% within one year, and 11.7% more than one year after the creation. Overall,

148 6 Open Data: Building and Maintaining the SOTorrent Dataset

Post block version count (n=115,484,618)

Edited post blocks (46.6%)

1 2 3 4 5 6 7 8 9 ≥ 10

0

10m

20m

30m

40m

50m

60m

Figure 6.10 – Histogram and boxplot showing the number of post block versions (vertical line visual-
izes the median value 1).

Timespan between edits (weeks)

Timespan (weeks)

N
um

be
r o

f e
di

ts

1 2 3 4 5 6 7 8

0
10
00
00

20
00
00

18
20
00
00

← 83.4%

Figure 6.11 – Bar chart visualizing all edit timespans between one and eight weeks (85.5% of all values,
n = 18,677,709); the other 14.5% are spread over a range of 475 weeks.

6.6 Evolution of Stack Overflow Posts 149

Table 6.2 – Correlation table with Spearman’s correlation coefficients ρ for different properties of
Stack Overflow posts (p-value < 0.001 for all combinations).

ρ Versions Age Score Comments GHMatches
Versions −0.03 0.09 0.26 0.09

Age −0.03 0.25 −0.03 0.10
Score 0.09 0.25 0.08 0.23

Comments 0.26 −0.03 0.08 0.09
GHMatches 0.09 0.10 0.23 0.09

n 38.4m 38.4m 38.4m 38.4m 137k

78.2% of all edits happen on the same day, i.e., soon after the creation of the post, and 83.4%
happen on the same day or within the first week after the creation (see Figure 6.11).

Post Editors: On SO, either the author of a post or a moderator, i.e., a SO user with a rep-
utation of at least 2,000, can make edits. We found that 87.4% of all edits were conducted by
the post authors themselves and 12.6% by moderators. We found no effect of the authors’
reputation on the fact that a moderator edits the post. We consider an analysis of typical
moderator changes to be an interesting direction for future work.

Questions vs. Answers: To compare questions and answers, we split the posts accord-
ing to their post type and then analyzed the three properties Post Block Count, Post Block
Length, and Post Block Versions for the most recent version of the posts. Regarding the post
block count, we found that answers have significantly less text and code blocks than ques-
tions (pw < 2.2e−16). The average number of text blocks is 2.1 (Mdn = 2 and SD = 1.3) for
questions and 1.6 (Mdn = 1 and SD = 1.1) for answers; the average number of code blocks is
1.3 (Mdn = 1 and SD = 1.4) for questions and 1.0 (Mdn = 1 and SD = 1.1) for answers. Both ef-
fects are small (d =−0.44 for text and d =−0.32 for code). We found no effect when compar-
ing the length of text blocks. However, code blocks in answers tend to be smaller than code
blocks in questions. The average length of answer code blocks was 8.7 lines (Mdn = 4 and
SD = 16.1) compared to 15.6 lines for question code blocks (Mdn = 7 and SD = 29.0). The dif-
ference was significant (pw < 2.2e−16) and the effect was small (d =−0.30). The difference is
also significant when measured in characters instead of lines (pw < 2.2e−16, d =−0.31). We
did not observe a significant difference in the number of versions for questions compared to
answers.

6.6.2 Properties of Edited Posts

To investigate which properties edited posts possess, we searched for monotonic relation-
ships between the version count of a post and other properties such as the age of the post,
its score, comment count, or the number of distinct files on GH referring to the post. Ta-
ble 6.2 shows the correlation coefficients (ρ) for those relationships based on SOTorrent re-
lease 2018-02-16. There was no correlation that exceeded the threshold for a low correlation
(0.3). However, the relationship between the version count and the number of comments
drew our attention as it had the highest correlation coefficient in the table. We decided to
explore this relationship using a quasi-experiment: We compared the number of comments

150 6 Open Data: Building and Maintaining the SOTorrent Dataset

of all posts with only one version to all posts with more than one version (version count over
all posts: Mdn = 1, M = 1.6, SD = 1.0). The difference was significant (pw < 2.2e−16) and
the effect size was medium (d = 0.52). We also compared the opposite relationship, i.e., the
number of versions of all posts with at most one comment to all posts with more than one
comment (comment count over all posts: Mdn = 1, M = 1.6, SD = 2.5). Again, the difference
was significant (pw < 2.2e−16), but the effect size was small (d = 0.49).

6.7 Communication and Edit Patterns

Our findings so far suggest that a relationship exists between Stack Overflow post edits and
communication events such as comments. To identify common communication and edit
patterns in Stack Overflow threads, we first conducted a quantitative analysis of the tempo-
ral connection between edits and comments. A follow-up qualitative study motivated the
design of a visual analysis tool that we then used to manually annotate a sample of Stack
Overflow threads.

6.7.1 Quantitative Analysis

As a first step in exploring the relationship between comments and post edits, we looked at
their temporal connection, i.e., if comments usually happen before or after edits. First, we
aggregated all edits (including post creation) and all comments per post id and day. Thus,
our units of observation were all days where posts were either created, edited or commented.
We found that in 32.3% of the cases, the posts were created or edited and commented; in
33.3% of the cases they were only created, in 9.1% of the cases only edited, in 7.5% of the
cases only created and edited, and in 17.8% of the cases only commented. If we focus on the
comments, we see that 64.4% of them happened on a day where the post had either been
created or edited. We then further focused on those days and calculated the time difference
between a comment and the closest edit. If a comment was closer to the creation than to
an edit, we assigned the comment to the creation. We found that 34.7% of the comments
were related to the creation of the post and 65.3% were related to an edit. Of the latter, 47.9%
were made before an edit and 52.1% afterwards. Moreover, the comments were usually made
right before (M =−1.2 hours, Mdn =−0.3, SD = 2.6) or soon after the edits (M =+1.3 hours,
Mdn =+0.3, SD = 2.7).

6.7.2 Qualitative Analysis

To further investigate the connection between post edits and comments that are made im-
mediately before or after edits, we conducted a qualitative analysis. We drew a random sam-
ple of 50 posts, 25 posts for which at least one comment had been made at most 10 minutes
before an edit and 25 posts for which at least one comment had been made at most 10 min-
utes after an edit. We qualitatively analyzed the posts and found that, in the majority of
cases, the comments and edits were clearly related (34 of 50 posts in our sample) and that
the edit added or modified a code block (30/50). We classified a small set of comments as
bug reports (10/50) and found that in some cases, the edit was explicitly documented in the
post (11/50, e.g., by prefixing content with “EDIT:”). Comments often asked for additional
information (22/50), and in cases where comments happened shortly before the edits, the

6.7 Communication and Edit Patterns 151

comment was often a clarifying question (14/25). Answer 154379373 represents a typical ex-
ample: In a timespan of 35 minutes, a user answered a question, edited the answer three
times, and commented on it once in response to three comments from the user asking the
question. To analyze such communication structures in more detail, we used SOTorrent to
aggregate edit and comment events for whole threads and built a visual analysis tool to iden-
tify patterns.

6.7.3 Visual Analysis Tool

We first aggregated all edit and comment events in SOTorrent release 2018-09-23 as described
in this blog post.4 We then drew a random sample of 50 threads with at least one post edit
and one comment (see retrieval and analysis scripts on GitHub [22, 23]). This sample con-
tained 255 edit and 319 comment events from 140 different posts. We qualitatively analyzed
20 of those threads, which means that we investigated the relationship of 101 edit and 112
comment events from 58 different posts in detail. To this end, we utilized a web-based vi-
sual analysis tool that we specifically designed to analyze the evolution of Stack Overflow
threads. Two authors analyzed a subset of the sample and agreed on an annotation strategy,
after which one author continued the analysis.

Figure 6.12 shows the two main views of our visual analysis tool. The tool provides an
overview of the edit and comment events in a thread (upper part of the figure). It displays
the question of a thread in the first row and the answers sorted by their creation date below.
All edit events (I: initial version, E: body edit, TE: title edit) and comment events (C) are
plotted using discrete time, with each new day shown as a vertical line. A circle border in
the same color as the circle fill indicates an edit/comment by the post author, a red border
indicates an edit/comment by another user. The currently selected event is highlighted using
an additional yellow border, and its event id is also shown in the header. When hovering
over events, a tooltip shows the exact timestamp of the event. Clicking on an event opens a
focused view that uses continuous instead of discrete time, grouped in time frames of one
hour (see middle part of Figure 6.12 and Figure 6.13). Pressing the ‘alt’ key while clicking on
an event in the main view or just clicking on an event in the focused view opens the edit or
comment on the Stack Overflow website (see lower part of Figure 6.12). While the overview
enables users to explore the complete evolution of a post, the focused view makes it easier to
spot (temporally) related events. In the example shown in Figure 6.12, the comment and the
edit on the left and the agglomeration of edits and comments on the right form two separate
groups. The source code of the tool together with our remarks for the 20 analyzed threads
can be found on GitHub [27]. A live demo of the tool is also available.5

6.7.4 Patterns

Our analysis revealed six different communication and edit patterns, which we describe in
the following.

3https://stackoverflow.com/a/15437937
4http://empirical-software.engineering/blog/sotorrent-edithistory
5http://research.sbaltes.com/so-edit-viz/

https://stackoverflow.com/a/15437937
http://empirical-software.engineering/blog/sotorrent-edithistory
http://research.sbaltes.com/so-edit-viz/

152 6 Open Data: Building and Maintaining the SOTorrent Dataset

Figure 6.12 – Post evolution visualization: The so-edit-viz tool enabled us to visually explore the
relationship of edits and comments in Stack Overflow threads (here: thread for question 7953840).
The figure shows the tool’s overview (top), detailed view for a particular event (middle), and linking
to Stack Overflow revision view (bottom).

Figure 6.13 – Time line of the burst of commenting and editing activity shortly after Stack Overflow
question 11252831 was posted.

http://research.sbaltes.com/so-edit-viz/
https://stackoverflow.com/q/7953840
https://stackoverflow.com/q/11252831

6.7 Communication and Edit Patterns 153

Burst of Activity: Several comments and edits occur within minutes of each other. This
pattern was very common in our sample of twenty threads as sixteen of the threads con-
tained at least one burst of activity. To illustrate this pattern, Figure 6.13 shows an excerpt
of the time line of SO question 11252831: After the initial question was posted, the thread
attracted two answers, seven comments, and one post edit within less than 40 minutes. This
burst in activity started with a clarification question posted as a comment to the question,
followed by the first answer (posted by a different user), and a response to the clarification
question by the user who had started the thread. One minute later, the same user then asked
a clarification question by commenting on the first answer, in response to which the user
who had posted this answer edited it and explained the edit in a comment. Three minutes
after that, the third answer was posted, followed by thank-you comments on both answers
from the user who had started the thread. Interestingly, the user referred to the edit in the
first answer from his/her comment on the second answer, before the user who had posted
the second answer commented that he/she was planning to update documentation else-
where to further clarify the issue.

Comment explains Edit: A comment is used to explain or make others aware of an edit.
This pattern occurred five times in our sample of twenty threads. A comment in response to
SO question 8687577 illustrates this pattern: A user commented the following on a question
created by a new user: “1) Welcome to SO. 2) It’s not clear what you want to know / are trying
to do.” The user asking the question then proceeded to edit the question to clarify, and left a
comment to make the community aware of the edited content: “I think it should be clearer
now [after the] post edit. Thanks again.” A similar example occurred in SO thread 24987992:
A user asked a question about how to draw a particular line in D3.js, and another user asked
for clarification through a comment: “Can you post also some image of your wanted output,
it’s hard to imagine what image you want?” In response to this comment, the user who had
started the thread then edited the question to add a link to an image showing a sketch of
the current output and the desired output, and a few minutes later, posted a comment to
increase awareness of the edit: “I upload[ed] the image [url], please take a look”.

Comment triggers Edit: A post is edited in response to a comment, which happened in
four out of the twenty threads in our sample. For example, SO thread 376732 contains two
instances of this pattern: The first comment on the question asks “What do you have in your
.htaccess?”, in response to which the user who had asked the question edited it, adding a six-
line code snippet along with the text “EDIT: This is the current htaccess:”. A similar pattern
occurred in the same thread almost three years later: A user commented on the accepted
answer, stating “I don’t think it’s a valid solution, because with the 404 error you’ll be serving
the page OK but in the header response you’ll see the 404 status code, so it will mess up with
your SEO, right?” The next day, the user who had posted the answer updated it in response to
the comment, and also left a new comment explaining the edit (see previous pattern): “You
are right I have changed the example accordingly [...]”.

Question Edit triggers Answer: An answer is posted shortly after the question has been
edited. This pattern occurred twice in our sample. SO thread 13864443 is a good example
of this pattern. The user who had asked the question did not receive a response right away,
and proceeded to make various edits to the question, including the addition of an extra tag

https://stackoverflow.com/q/11252831
https://stackoverflow.com/q/8687577
https://stackoverflow.com/q/24987992
https://stackoverflow.com/q/376732
https://stackoverflow.com/q/13864443

154 6 Open Data: Building and Maintaining the SOTorrent Dataset

and an explanation of the particular constraints of the situation. Within minutes of one of
these edits, the first answer to the question was posted—more than 15 hours after the time
the question was originally asked.

Overlap between Comment and Edit: Text and/or code is copied between comments
and post edits, which occurred in two out of the twenty threads in our sample. In SO thread
3529744, the user who had originally asked the question copied a clarification comment
he/she had made in response to another comment into the question text itself: “It is stand
[alone] code. As is. There is no [query] before or after this code.” A more extreme example
of this copy-and-paste pattern occurred in SO thread 16245209. The user who had asked
the question initially did not include one important code snippet, and was asked for this
code snippet in both comments and answers. He/she then proceeded to edit the question
to include a 19-line code snippet, and also added the snippet in form of a comment to the
question and the answer.

Comment announces Edit: A comment is used to announce a subsequent edit by the
same user. We identified two instances of this pattern in our sample. In both cases, this an-
nouncement was made in the context of an ongoing discussion. In SO thread 20849332, the
user who asked the question commented in responses to a suggestion received in a previ-
ous comment on the question: “[...] I’ll update the question in a minute with more detail
and some output.” He/she proceeded to make the promised edit nine minutes later. In SO
thread 17591278, the user who had asked the question commented in response to an answer:
“[...] I tried your suggestion with some modification and it worked in a certain way (I’ll edit
my post in few minutes) [...]”, and the corresponding edit was made less than an hour after
this comment.

6.8 Code Clones on Stack Overflow

Code clones have been extensively studied in the software engineering research community.
Juergens et al. found that inconsistent code clones can be a major problem during the de-
velopment and maintenance of software projects, unless “special care is taken to find and
track existing clones and their evolution” [188]. Stack Overflow threads frequently serve as
crowd-sourced software documentation [252, 337], often containing code snippets together
with explanations [369]. Despite the fact that code clones on Stack Overflow can suffer from
similar issues like code clones in software projects, it is only recently that researchers started
investigating this phenomenon. In this section, we present an analysis of code clones on
Stack Overflow, based on the SOTorrent dataset. We will focus on duplicates of code snip-
pets copied from external sources into SO and on duplicates of code snippets within SO.
The usage and attribution of code snippets copied from SO in open source software projects
was analyzed and discussed in Chapter 3. We were particularly interested in the licensing of
snippets copied into SO and whether their license status allows redistribution on SO.

6.8.1 Data Retrieval and Quantitative Analysis

To detect code clones on SO, we utilized the BigQuery version of SOTorrent release 2018-09-
23. First, we selected all code blocks from the most recent post versions and normalized

https://stackoverflow.com/q/3529744
https://stackoverflow.com/q/16245209
https://stackoverflow.com/q/20849332
https://stackoverflow.com/q/17591278

6.8 Code Clones on Stack Overflow 155

the whitespaces. To this end, we: (1) replaced sequences of new lines with a single new line
character, (2) removed new lines at the end of the last line, and (3) removed lines only con-
taining brackets (()[]{}). Using this normalized content, we calculated the normalized
line count of those code blocks (NLOC). Afterwards, we further normalized the content to
only contain numbers and digits (character class [a-zA-Z0-9]) and calculated a finger-
print of the normalized code block content using the FARM_FINGERPRINT function. This
yielded 43,942,960 distinct fingerprints—that is normalized code blocks—in total. We then
used this fingerprint as a GROUP BY argument to determine the posts using a certain snip-
pet, and finally aggregated that information per thread. The corresponding retrieval script
can be found on GitHub [22].

As a first filtering step, we selected code blocks that are present in at least two different
threads, which was true for 909,323 (2.1%) of all distinct fingerprints. Those code clones had
an average length of 5.4 normalized lines (SD = 12.9, Mdn = 2, IQR = 4) and were present in
3.5 different threads (SD = 13.3, Mdn = 2, IQR = 1). To select only non-trivial code snippets,
we first used a threshold of six normalized lines of code, as proposed by Bellon et al. [54]. We
ranked the remaining 215,746 code snippets according to the number of threads they were
found in and according to their normalized length. Then, we qualitatively analyzed the first
50 snippets in that list. Since we rated 25 of those snippets as non-code (main category were
configuration files) or too trivial, we decided to adjust the threshold for the normalized line
count to 20.

The stricter filtering led to a second sample with 46,818 code snippets. Those snippets
had an average length of 42.6 normalized lines (SD = 37.7, Mdn = 30, IQR = 22) and were
present in 2.3 different threads (SD = 1.1, Mdn = 2, IQR = 0)—13.4% of the snippets were
present in more than two threads. Figures 6.14 and 6.15 visualize the length and thread count
distribution in this sample. We provide the coding for both samples (≥ 6 NLOC and ≥ 20
NLOC) on Zenodo [26]. The analysis scripts are available on GitHub [23].

6.8.2 Qualitative Analysis

In the second sample, we again ranked the code snippets according to their thread count and
length to qualitatively analyze the first 50 snippets in the resulting list. We also implemented
a web tool6 that allowed us to explore that list. The tool enables users not only to browse the
complete list, but it also to focus on a single snippet in a dedicated view. This view shows the
snippet, its fingerprint, the posts containing the snippet sorted by their creation date, other
SO posts linked from those posts, and linked external sources (see Figure 6.16). The latter
information helped us identifying if and from where a snippet has been copied into SO. The
source code of the tool is available on GitHub [26].

While there were still ten snippets that we categorized as configuration files, 29 snippets
were non-trivial source code snippets (mainly Java and VB/VBA). Other categories included
XML GUI definitions for Android, JSON/XML examples, and HTML files. Except for two
cases, we were able to identify the source, or at least a source, of the snippet. Only in four
cases, we considered the snippets to be originally from Stack Overflow. The main external
sources were a website providing Android tutorials7 (ten snippets) and the official Android

6http://research.sbaltes.com/so-clones/
7https://www.androidhive.info/

http://research.sbaltes.com/so-clones/
https://www.androidhive.info/

156 6 Open Data: Building and Maintaining the SOTorrent Dataset

Line count of code blocks with ≥ 1 clone and ≥ 20 NLOC (n=46,818)

← median (30)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 ≥ 100

0

5k

10k

15k

20k

Line count

N
um

be
r o

f c
od

e
bl

oc
ks

Figure 6.14 – Normalized line count of non-trivial code blocks (≥ 20 NLOC) with at least one clone,
i.e., present in at least two threads.

6.8 Code Clones on Stack Overflow 157

Presence of code blocks with ≥ 20 NLOC in multiple threads (n=46,818)

0
25
00

50
00

40
00
0

13.4%

2 3 4 5 ≥ 6

Number of threads

N
um

be
r o

f c
od

e
bl

oc
ks

Figure 6.15 – Presence of non-trivial code blocks (≥ 20 NLOC) in multiple threads.

158 6 Open Data: Building and Maintaining the SOTorrent Dataset

Figure 6.16 – Snippet view ofso-cloneswebsite showing a code snippet that has likely been copied
from the website androidhive into Stack Overflow.

http://research.sbaltes.com/so-clones/snippet-view.html?hashValue=490449213296150202
https://www.androidhive.info/2012/05/how-to-connect-android-with-php-mysql/

6.8 Code Clones on Stack Overflow 159

documentation8 (4 snippets). We identified a possible licensing conflict in 31 cases, either
because the website did not provide any license or because the content was distributed un-
der a restrictive license or under restrictive terms of use. In the following, we are going to
describe the two main external sources in more detail. The independent Android website
androidhive has rather restrictive terms of use9:

“Our Website is also protected under international copyright laws. The copying,
redistribution, use or publication by you of any portion of our Website is strictly
prohibited.”

Nevertheless, only few SO posts attribute this source (3 out of 45 posts in the example
shown in Figure 6.16). It is unclear whether the snippet has actually been copied from this ex-
ternal source (the creation of the posts on androidhive and SO was around April/May 2012).
But if this is the case, the 45 snippets copied on SO could be problematic. In fact, we iden-
tified four more variants of that same code snippet among the 50 snippets we analyzed. On
the other hand, if SO is the original source, the usage on androidhive does not adhere to
Stack Overflow’s CC BY-SA license [31].

The snippets copied from the official Android documentation are licensed under CC BY
2.510. This license allows usage under Stack Overflow’s CC BY-SA license, but only when at-
tributing the original source. However, only in few cases the users added a link to the Android
documentation to their posts. Thus, also those usages could lead to licensing issues.

Leaving the licensing implications aside, the code clones within SO are also problematic
for the platform’s usability. Those duplicates could indicate that different threads solved
a similar problem. However, if there is no link between those threads, the information is
spread and hard to capture for readers. Stack Overflow recommends to “always quote the
most relevant part of an important link, in case the target site is unreachable or goes perma-
nently offline”.11 While it makes sense to quote the main points of an external source or
pseudo code of algorithms, it can be questioned if it is reasonable to have several indepen-
dent copies of non-trivial code snippets on SO. Assuming the snippet in the reference doc-
umentation is updated, all copies on SO (14 in this example) must also be updated. Again,
only few SO authors link to other posts that already provided the same snippet, making it
even harder to update them.

To discuss how to best approach those licensing and usability issues, we created a post on
Stack Overflow Meta [320] to involve the community. We asked, for example, if it would make
sense to point SO users to related threads based on the similarity of the code blocks posted
in a thread, which could be done before users post a question or integrated into the website
for existing posts. The post got upvoted to a score of 28 (as of October 30, 2018) and is being
discussed in the comments, but there is no answer yet. SO user Martijn Pieters, for example,
wrote12:

“I see this a lot in Java (especially Android) code when researching serial plagia-
rists. There is a lot of example code floating around that is free to copy, but there

8http://developer.android.com/
9https://www.androidhive.info/terms-of-service/

10https://developer.android.com/license
11https://stackoverflow.com/help/how-to-answer
12https://meta.stackoverflow.com/questions/375761/how-to-handle-code-

clones-on-stack-overflow#comment641119_375761

http://research.sbaltes.com/so-clones/snippet-view.html?hashValue=-4458403169525607496
http://developer.android.com/
https://www.androidhive.info/terms-of-service/
https://developer.android.com/license
https://stackoverflow.com/help/how-to-answer
https://meta.stackoverflow.com/questions/375761/how-to-handle-code-clones-on-stack-overflow#comment641119_375761
https://meta.stackoverflow.com/questions/375761/how-to-handle-code-clones-on-stack-overflow#comment641119_375761

160 6 Open Data: Building and Maintaining the SOTorrent Dataset

seems to be an endemic culture that sees copying as a legitimate method of devel-
oping software. [...] answers should primarily be your own work, not someone
else’s.”

One preliminary result of the discussion is that there are comments in favor of adding the
missing attribution for the external source to the SO posts. However, this would only solve
the licensing issue for snippets licensed under a rather permissive license. Moreover, the
clones on SO would still be isolated from each other. Depending on the outcome of the
discussion on Stack Overflow Meta, we plan to implement the approach that the community
favors, for example by automatically proposing post edits to add the missing attribution.

6.9 Summary

The SOTorrent dataset has allowed us to study the phenomenon of post editing on SO in
detail (RQ1). We found that a total of 13.9 million SO posts (36.1% of all posts) have been
edited at least once. Many of these edits (44.1%) modify only a single line of text or code, and
while posts grow over time in terms of the number of text and code blocks they contain, the
size of these individual blocks is relatively stable. Interestingly, only in 6.1% of all cases are
code blocks changed without corresponding changes in text blocks of the same post, sug-
gesting that SO users typically update the textual description accompanying code snippets
when they are edited. We also found that edits are mostly made shortly after the creation of
a post (78.2% of all edits are made on the same day when the post was created), and the vast
majority of edits are made by post authors (87.4%)—although the remaining 12.6% will be
of particular interest for our future work. The number of comments on posts without edits
is significantly smaller than the number of comments on posts with edits, suggesting an in-
terplay of these two features (RQ2). We find evidence which suggests that commenting on
a post on SO helps to bring attention to it (RQ3). Of the comments that were made on the
same day as an edit, 47.9% were made before an edit and 52.1% afterwards, typically (median
value) only 18 minutes before or after the edit.

Motivated by this quantitative analysis of the temporal relationship between edits and
comments, we conducted a qualitative study and developed a visual analysis tool to explore
the communication structure of SO threads. Our analysis using this tool revealed several
communication and edit patterns (RQ3) that provide further evidence for the connection
between post edits and comments. We found comments which explain, trigger, and an-
nounce edits as well as content overlap between edits and comments. The fact that SO users
rely on the commenting feature to make others aware of post edits—and in some cases even
duplicate content between comments and posts—suggests that users are worried that con-
tent evolution will be missed if it is buried in a comment or has been added to a post later
via an edit. At the same time, we found evidence that edits can play a vital role in attracting
answers to a question. In our future work, we will explore how changes to Stack Overflow’s
user interface could make the evolution of content more explicit and remove the need for
users to repurpose the commenting feature as an awareness mechanism.

Besides, we investigated code clones on SO (RQ4), revealing that, just like in regular soft-
ware projects, code clones on SO can affect the maintainability of posts and lead to licensing
issues. Depending on the outcome of the discussion we started on Stack Overflow Meta, we

6.10 Related Work 161

plan to implement means to add the missing attribution to posts and mark threads as related
based on the similarity of the code blocks they contain.

6.10 Related Work

Over the past years, there have been various research papers on leveraging knowledge from
SO, e.g., to support post edits [82], to automate the search [74, 257], or to augment API doc-
umentation [335]. Regarding the population of SO users, studies described properties such
as gender [346] and age [242]. Wang et al. analyzed the asking and answering behavior of SO
users and found that most of them only answer or ask one question [355]. We complement
those results with our finding that post edits happen soon after post creation and that com-
ments are closely linked to edits. Xia et al. describe that it is common for developers to search
for reusable code snippets on the web [368]. Yang et al. found that SO Python and JavaScript
snippets are more usable in terms of parsability, compilability and runnability, compared
to Java and C# [369]. Yang et al. analyzed code clones between Python snippets from SO
and Python projects on GH and found a considerable number of non-trivial clones [370],
which may have a negative impact on code quality [1]. We previously investigated the us-
age and attribution of SO code snippets in GH projects and found that at most a quarter of
the usages are attributed as required by SO’s license (see Chapter 3). Other studies aimed at
identifying API usage in SO code snippets [324], describing characteristics of effective code
examples [247], investigating whether SO code snippets are self-explanatory [336], or ana-
lyzing the impact of copied SO code snippets on application security [2, 140]. There has also
been work on the interplay between user activity on SO and GH [19, 294, 347]. SOTorrent
enables researchers to further investigate this connection by collecting links from public GH
projects to SO posts. To describe topics of SO questions and answers, different methods like
manual analysis [337] and Latent Dirichlet Allocation [8, 355] have been used. Automatically
identifying high-quality posts has been another research direction, where metrics based on
the number of edits on a question [371], author popularity [258], and code readability [117]
yielded good results. With our dataset, the evolution of such high-quality posts can easily be
analyzed. German et al. investigated how code siblings, code clones that evolve in a different
system than the original code, flow between systems with different licenses [147]. Tracing
the flow of siblings between GH projects, posts on SO, and external sources is another pos-
sible direction for future work that SOTorrent can support. Two fields related to our research
are source code plagiarism detection [202] and code clone detection [275], which both rely
on determining the similarity of code fragments.

6.11 Conclusion

In this chapter, we described how we reconstructed and analyzed the evolution of Stack
Overflow posts. We presented the open dataset SOTorrent that enables researchers to an-
alyze the evolution of SO content at the level of whole posts and individual text and code
blocks. We described how we evaluated 134 different string similarity metrics regarding their
suitability to match text and code blocks to their predecessor versions. For text blocks, a
profile-based metric using the Manhattan distance yielded the best results; for code blocks, a
fingerprint-based metric using the Winnowing algorithm [122, 283] outperformed the other

162 6 Open Data: Building and Maintaining the SOTorrent Dataset

metrics. Since multiple predecessor candidates may exist, we also developed a matching
strategy that we iteratively refined using random samples of SO posts. After an analysis of
false positive and false negative matches, we further improved this strategy.

Our quantitative and qualitative analyses based on the dataset provided new insights into
the evolution of SO posts, and in particular the relationship between post edits and com-
ments and the presence of code clones on SO. In future work, we want to deepen our un-
derstanding of how code snippets are maintained on SO, and how code clones affect their
maintainability. Moreover, as SOTorrent also collects links from SO posts to other websites
and from public GH projects to SO posts, we want to explore how code flows from and to
external sources like blog posts and open source software projects. Besides, we will continue
to improve and maintain the dataset, for example by developing means to automatically de-
tect code blocks that are not used for code, but for markup (see, e.g., second code block in
Figure 6.1). Our vision is that SOTorrent will help other researchers to further investigate the
evolution of SO posts and their connection to other platforms and resources. One step in
that direction is the selection of SOTorrent as the official mining challenge of the 16th Inter-
national Conference on Mining Software Repositories (MSR 2019) [47].

7
Chapter 7

Summary and Future Work

“ There are times when you run a marathon and you wonder: Why am I doing
this? But you take a drink of water, and around the next bend, you get your wind
back, remember the finish line, and keep going.”

—Steve Jobs, Interview with Brent Schlender (1995)

In this dissertation, we utilized diverse research designs to empirically investigate yet un-
derexplored aspects of software developers’ work habits and expertise. We started by analyz-
ing how developers use sketches and diagrams in their daily work, then derived requirements
for tool support, and finally implemented and evaluated two tool prototypes. In a second re-
search project, we investigated how common it is for developers to copy non-trivial code
snippets from the popular question-and-answer platform Stack Overflow into open source
software projects hosted on GitHub, without adhering to the terms of Stack Overflow’s li-
cense. In that project, we also assessed developers’ awareness of the licensing situation and
its implications. While those first two research projects can be regarded as analyses of a
rather positive and a rather negative work habit, the third project aimed at analyzing behav-
iors that may lead to developers becoming experts in certain software development tasks.
However, we not only identified factors influencing expertise formation over time, but also
developed a first conceptual theory structuring the broad concept of software development
expertise.

Sketching Regarding developers usage of sketches and diagrams, we found that software
practitioners frequently create and use such visual artifacts. Our online survey with 394 par-
ticipants revealed that sketches and diagrams are often informal but are considered to be a
valuable resource, documenting many aspects of the software development workflow. We
showed how sketches are related to source code artifacts on different levels of abstraction
and that roughly half of them were rated as helpful to understand the source code. As doc-
umentation is frequently poorly written and out of date, sketches could fill in this gap and
serve as a supplement to conventional documentation such as source code comments or
other textual resources. The majority of sketches and diagrams were created on analog me-
dia such as paper or whiteboard. Many of them were archived, but our survey participants
also named technical issues, for example that there is no good technique to keep (digital ver-
sions of) sketches together with source code. In response to this observation, we developed
the tool prototype SketchLink, which assists developers in archiving and retrieving sketches
related to certain source code artifacts. Regarding the evolution of sketches, our qualitative
results indicated that it is a common use case for sketches to be initially created on analog
media like paper or whiteboards and then, potentially after some revisions, they end up as an
archived digital sketch. To support such workflows, we developed a second tool prototype
named LivelySketches, which supports transitions from analog to digital media and back.
One direction for future work is to merge the features of both prototypes and evaluate the re-
sulting tool in larger context. Moreover, with techniques such as graphic facilitation [5] and

164 7 Summary and Future Work

sketchnoting [273] becoming more and more popular, analyzing potential use cases for those
techniques in software development projects emerged as another direction for future work.
We already interviewed graphic facilitators who worked in software development projects,
but also software developers and architects with sketching experience. Based on those in-
terviews, we will derive recommendations for applying visualization techniques in different
phases of software development projects.

Code Plagiarism Our investigation of code plagiarism revealed that at most one quarter of
the code snippets copied from Stack Overflow into public GitHub Java projects are attributed
as required by Stack Overflow’s license (CC BY-SA). Moreover, we found that between 3.3%
and 11.9% of the analyzed GitHub repositories contained a file with a reference to Stack Over-
flow. We identified only 1.8% of the GitHub projects with copies of Stack Overflow code snip-
pets to attribute the copy and to use a license that is share-alike compatible with Stack Over-
flow’s license. For the other 98.2% of the projects, especially the share-alike requirement of
CC BY-SA may lead to licensing conflicts. Two online surveys have shown that many devel-
opers admit copying code from Stack Overflow without attribution. We also found that many
of them are not aware of the licensing situation and its implications. In the course of our re-
search on Stack Overflow code snippets, we built the SOTorrent dataset, which we continue
to maintain. Beside closely following how other researchers use the dataset to study different
questions related to code on Stack Overflow, we will continue to investigate how such code
snippets are maintained and how their evolution can be better supported. Another direc-
tion for future work, which is not limited to Stack Overflow, is to build better tool support
for developers dealing with online code snippets. On the one hand, continuous integration
tools could check whether commits add non-trivial code snippets from online resources to a
project; on the other hand, tools could support developers in understanding license compat-
ibility not only for whole software libraries, but also on the level of individual code snippets
copied from online resources. Those efforts can help mitigating legal threats for open source
projects that intentionally or unintentionally use code from diverse sources.

Expertise Development With our research on software development expertise, we identi-
fied different characteristics of software development experts, but also factors fostering or
hindering the formation of software development expertise. Besides building a first con-
ceptual theory, we found that expertise self-assessments are context-dependent and do not
always correspond to experience measured in years. Researchers can use our findings when
designing studies involving expertise self-assessments. We recommend to explicitly describe
what distinguishes novices from experts in the specific setting under study when asking par-
ticipants for expertise self-assessments. Our theory enables researchers to design new exper-
iments, but also to re-evaluate results from previous experiments. Software developers can
use our results to learn which properties are distinctive for experts in their field, and which
behaviors may lead to becoming a better software developer. For example, the concept of de-
liberate practice, and in particular having challenging goals, a supportive work environment,
and getting feedback from peers are important factors. For “senior” developers, our results
provide suggestions for being a good mentor. Mentors should know that they are considered
to be an important source for feedback and motivation, and that being patient and being
open-minded are desired characteristics. We also provide first results on the consequences
of age-related performance decline, which is an important direction for future work. Em-

165

ployers can learn what typical reasons for demotivation among their employees are, and
how they can build a work environment supporting the self-improvement of their staff. Be-
sides obvious strategies such as offering training sessions or paying for conference visits,
our results suggest that employers should think carefully about how information is shared
between their developers and also between development teams and other departments of
the company. Finally, employers should make sure to have a good mix of continuity and
change in their software development process, because non-challenging work, often caused
by tasks becoming routine, is an important demotivating factor for software developers. One
important direction for future work, which emerged in the course of our research, is the role
of older software developers. Especially in industrialized countries, the demographic change
leads to an older work force, since people are expected to retire later. Still, the challenges that
older developers face in a competitive field like software development are largely unknown.
Our study participants already mentioned different age-related challenges. We plan to study
those challenges to be able to mitigate them where possible, preventing those experienced
developers from dropping out of software development.

Throughout this dissertation, we not only presented the designs and results of the differ-
ent empirical studies we conducted, but also highlighted how we used those results to guide
further actions. We used our empirical results to: (1) motivate and implement novel tools
to support software developers’ sketching workflows, (2) inform developers about possible
licensing issues in their open source software projects, (3) build a first conceptual theory of
software development expertise that researchers as well as practitioners can use, (4) point to
the under-explored phenomenon of age-related performance decline, (5) grow awareness in
the research community about ethical implications of certain sampling strategies, motivated
by participants’ feedback, and (6) create an open dataset that the research community can
use for future research projects on Stack Overflow content. Our work supports researchers
and practitioners in making data-informed decisions when developing new tools or improv-
ing processes related either to the specific work habits we studied or expertise development
in general.

List of Figures

2.1 11 dimensions of a sketch or diagram in software development. 5
2.2 Sketches collected during our field study, showing a geometrical problem, a

workflow and a related GUI, and the interaction of software components (left
to right). 6

2.3 Example of a rather formal diagram collected during our field study, showing a
process for translating resource strings. 6

2.4 List representation of code entities (methods and classes) sorted by consumed
runtime with filter options (image cropped). 13

2.5 In-situ visualization of performance information within the code view for classes,
methods, and method calls. 13

2.6 Study setup . 13
2.7 Distribution of answers for the formality of a sketch (FOR) and the use of UML

elements (6-point Likert scale items). 21
2.8 Distribution of answers indicating whether the sketch could help the respon-

dent (HES) or others (HEO) in the future to understand the related source code
artifact(s) (6-point Likert scale items). 24

2.9 Sketches used to explore alternatives (left) and dynamic behavior (right). 31
2.10 Exemplary usage of SketchLink for whiteboard sketching. 39
2.11 SketchLink architecture. 39
2.12 SketchLink: Source code navigation using tablet. 40
2.13 SketchLink web application running on iOS 7: Metainfo view. 41
2.14 SketchLink web application running on iOS 7: Linked class (button ‘Follow

Link’ can be used to navigate to the artifact within the IDE). 42
2.15 SketchLink web application running on iOS 7: Link view (packages on the left,

classes and methods on the right). 42
2.16 SketchLink plugin for IntelliJ IDEA: Floating mode. 43
2.17 SketchLink plugin for IntelliJ IDEA: Docked mode. 43
2.18 Our conceptual workflow of round-trip sketching from analog to digital and

back. 45
2.19 Two views of the LivelySketches prototype. 47
2.20 Architecture of LivelySketches. 48
2.21 Sketch with QR code created during LivelySketches formative user study. 49

3.1 RQ1-4 – Phase 1: We searched for attributed and unattributed usages of the
code snippets from the ten most frequently referenced answers on Stack Over-
flow (SO) in all Java files in the BigQuery GitHub (GH) data set using regular
expressions and used this data to answer our research questions (time span of
this phase: 07/2016–11/2016). 61

3.2 RQ1 – Phase 2: Histogram visualizing the selected sampling frame of popular
GitHub Java projects (n = 9,437); the 99% quantile of all non-fork Java projects
was 29 watchers (M = 2.77, Mdn = 0, Q1,3 = 0); based on the GHTorrent data
dump 2016-02-01. 65

168 List of Figures

3.3 RQ1 – Phase 2: Comparison of different CPD configurations: black: only mt
set; blue: mt and ia set; red: mt, ia, and ii set; dashed line: precision, solid
line: recall; final configuration: mt= 40 (precision = 0.94, recall = 0.35). 67

3.4 RQ1 – Phase 3: We searched for as many exact matches of Java snippets from
Stack Overflow (SO) in public GitHub (GH) projects as feasible. We filtered the
GH Java projects to exclude small ‘toy’ projects and further excluded short and
unpopular SO snippets. NLOC means that we normalized the source code be-
fore we determined its length. In the end, we searched for exact matches of
29,370 snippets in 1,7m Java files (50.5 bil. combinations) (time span of this
phase: 03/2017–04/2017). 70

3.5 RQ1 – Phase 3: Barplot and histograms with boxplots visualizing the applied
filters to reduce the number of GH Java files we searched for exact matches of
SO snippets; 65 LOC: 75% quantile of all GH Java files; 1 watcher: 75% quantile
of all GH projects containing Java files; 4 files: 25% quantile of all GH projects
containing Java files; based on the GHTorrent BigQuery data set 2017-01-19. . . 71

3.6 RQ1 – Phase 3: Histograms with boxplots visualizing the applied filters to re-
duce the number of Java code snippets from Stack Overflow (SO) in our search
for exact matches of these snippets in Java files hosted on GitHub (GH); based
on the Stack Overflow BigQuery data set 2017-03-27. 72

3.7 RQ1 – Phase 3: Our workflow to remove false positive matches and snippets
available from other sources than the SO post. 74

3.8 Scores of Stack Overflow (SO) Java answers referenced in public GitHub (GH)
projects compared to scores of Java answers not referenced in GH projects; out-
liers not depicted; data retrieved from BigQuery GH and SO data sets (11/2017). 83

4.1 Research design . 90
4.2 High-level concepts/relationships of GT (phase 1). 92
4.3 High-level concepts and relationships of preliminary conceptual theory (phase

2). 94
4.4 High-level concepts/categories of revised conceptual theory (phase 3); asterisk

refers to descriptions in the text. 98
4.5 General/Java experience (GE , JE) and general/Java expertise rating (GRsem, JRsem)

of participants in samples S1, S2, and S3. 100
4.6 Self-assessment of participants’ Java expertise: Adjusted semantic differential

vs. Dreyfus model (S1: n = (127;127), S2: n = (86;82)). 108

5.1 Timeline with responses per day for the first four weeks of our online survey. . . 117
5.2 Age distribution of our sample and the Stack Overflow developer surveys 2013

and 2015. 122

6.1 Exemplary Stack Overflow answers with code blocks (top, 3758880) and with
inline code (bottom, 4888400). The LocalId represents the position in the
post. 129

6.2 Connection of SOTorrent tables to other resources. 130
6.3 Database schema of SOTorrent release 2018-08-28: The tables from the official

SO dump [305] are marked gray, the additional tables are marked blue. Not all
foreign key constraints are shown. 131

https://stackoverflow.com/a/3758880
https://stackoverflow.com/a/4888400

List of Figures 169

6.4 Histogram and boxplot showing the number of Stack Overflow questions and
answers with a certain version count (PostHistoryTypeIds 2, 5, 8); based on the
SO data dump 2017-06-12; vertical line is median. 135

6.5 App developed to create ground truth for similarity metric evaluation: Text
blocks are marked with blue color, code blocks with orange color, deleted lines
are red, added lines are green. 136

6.6 Post with multiple equal predecessors (13064858). 137
6.7 Performance of selected metrics: manhattanFourGramNormalized for text (blue)

and winnowingFourGramDiceNormalized for code (red); selected thresholds:
0.17 for text and 0.23 for code (dotted lines). 143

6.8 Visualization of an issue with previous matching strategy in case the equal
match was not available anymore. This example visualizes the situation be-
tween versions 6 and 7 of question 17158055. The orange connections visual-
ize the ground truth, the gray line visualizes the connection set by the previ-
ous matching strategy in combination with the selected default metrics. The
connection between code block C’ in version 6 and C in version 7 is missing,
because C has an equal match in the previous version, but this match is not
available anymore. C’ in version 6 is very similar, but not equal to C in versions
6 and 7. 143

6.9 Boxplots showing the line count of text and code blocks in the latest version of
Stack Overflow posts (n = 69,940,599 for text and n = 42,568,011 for code). . . 147

6.10 Histogram and boxplot showing the number of post block versions (vertical
line visualizes the median value 1). 148

6.11 Bar chart visualizing all edit timespans between one and eight weeks (85.5% of
all values, n = 18,677,709); the other 14.5% are spread over a range of 475 weeks.148

6.12 Post evolution visualization: The so-edit-viz tool enabled us to visually
explore the relationship of edits and comments in Stack Overflow threads (here:
thread for question 7953840). The figure shows the tool’s overview (top), de-
tailed view for a particular event (middle), and linking to Stack Overflow revi-
sion view (bottom). 152

6.13 Time line of the burst of commenting and editing activity shortly after Stack
Overflow question 11252831 was posted. 152

6.14 Normalized line count of non-trivial code blocks (≥ 20 NLOC) with at least one
clone, i.e., present in at least two threads. 156

6.15 Presence of non-trivial code blocks (≥ 20 NLOC) in multiple threads. 157
6.16 Snippet view of so-clones website showing a code snippet that has likely

been copied from the website androidhive into Stack Overflow. 158

https://stackoverflow.com/posts/13064858/revisions
https://stackoverflow.com/q/17158055
http://research.sbaltes.com/so-edit-viz/
https://stackoverflow.com/q/7953840
https://stackoverflow.com/q/11252831
http://research.sbaltes.com/so-clones/snippet-view.html?hashValue=490449213296150202
https://www.androidhive.info/2012/05/how-to-connect-android-with-php-mysql/

List of Tables

2.1 Structure of online survey (part 1 of 2), asterisks indicate level of measurement
(no asterisk: nominal scale, one asterisk: ordinal scale, two asterisks: ratio scale). 8

2.2 Structure of online survey (part 2 of 2), asterisks indicate level of measurement
(no asterisk: nominal scale, one asterisk: ordinal scale, two asterisks: ratio scale). 9

2.3 Quasi-experiments: Wilcoxon rank-sum test (W), Spearman’s rho (ρ), and Cliff’s
delta (δ). One asterisk indicates that the two-tailed p-value is smaller than 0.05,
two asterisks indicate a p-value smaller than 0.01. CIδ: confidence interval of
δ at 95% confidence level. 16

2.4 Correlation table with Spearman’s correlation coefficient ρ (one asterisk: sig-
nificant at the 0.05 level, two asterisks: remains significant after Bonferroni
correction). 25

2.5 Participants of observational study: Team assignment, current occupation, and
professional work experience. 27

2.6 Participants of observational study: Experience in object-oriented program-
ming, Java, collections and data structures, IntelliJ, other IDEs, fixing perfor-
mance bugs, our tool, and profiling tools in general. 27

2.7 Codes assigned to developers’ interactions during performance bug location. . 28

2.8 Statistics about team activity for performance bug 3: Duration of locating phase,
success (X: bug fixed, ×: not fixed, ◦: bug fixed, but semantics changed), in-
teraction frequency, and point in time when the first runtime hypothesis was
formulated. 29

2.9 Interactions while locating performance bug 3: Duration of locating phase,
success (X: bug fixed, ×: not fixed, ◦: bug fixed, but semantics changed), pair
programming roles (asterisk indicates that navigator took over role of driver),
codes (description in Table 2.7), and point in time when sketches were used (D:
during, A: after locating the bug). 30

2.10 Propositions based on cross-case analysis of interview answers related to the
role of sketching when locating, understanding, communicating, or fixing per-
formance bugs. 31

3.1 RQ 1 – Phase 1: Ten most frequently referenced code snippets from SO Java
answers; one asterisk: link was broken and referred to a question, we selected
two referenced snippets; two asterisks: snippet based on external resource, but
adapted. 62

3.2 RQ 1 – Phase 1: Ten most frequently referenced code snippets from SO Java an-
swers, references in GH Java files and testing of regular expressions for those
snippets; LA: number of distinct referencing lines, FA: number of distinct ref-
erencing files, FAQ: number of distinct referencing files including references to
corresponding question. 63

172 List of Tables

3.3 RQ 1 – Phase 1: Ten most frequently referenced code snippets from SO Java
answers; estimated ratio of unattributed usages detected using regular expres-
sions; number of matched files (ALL), distinct matches (DISTINCT), distinct matches
with reference to SO (REF), distinct matches without reference to SO (NO-REF). 63

3.4 RQ 1 – Phase 2: Results for different CPD configurations; all matches, distinct
snippet-file pairs, true positive matches (Cso ∩ Ccpd), false positive matches
(Ccpd\Cso), precision, and recall. 68

3.5 RQ 1 – Phase 2: Results of searching copies of two sets of Stack Overflow snip-
pets in a sample of GitHub projects (n = 2,313): Columns named MATCHED

show number of distinct matched snippets, answers, files, and repositories;
column REF shows number of matched files containing a reference to Stack
Overflow. 69

3.6 RQ 1 – Phase 2: External sources for snippets: The table shows the number
of answers with snippets in the two sets and how many of those answers con-
tained a link to an external source. Abbreviations: Snippets also available in a
blog post (BLOG), in a GitHub repository (GH), in an Android or JDK bug de-
scription (BUG REPORT), in an Android or Java documentation page (DOC). . . . 73

3.7 RQ 1 – Phase 2: License of external sources for snippets: The table shows under
which licenses the snippets from external sources can be used; NO: no license
provided, FREE: author added a comment that the code is free to use, TOS: us-
age is restricted by the website’s terms of service, APACHE 2.0: available under
the Apache 2.0 license, GPL 2.0: available under the GPL 2.0 license. 73

3.8 Summary of results from phases 1 to 3: Distinct references to answers (A) or
questions (Q) on Stack Overflow (SO) in the Java files from GitHub analyzed in
each phase; number of analyzed files and repositories, files/repos containing a
reference to SO, files/repos containing a copy of a SO snippet, attributed copies
of SO snippets. 76

3.9 Five most common licenses of GitHub repositories matched in phase 1 con-
taining attributed or unattributed copies of code snippets from Stack Overflow. 78

3.10 Five most common licenses of GitHub repositories matched in phase 2 con-
taining attributed or unattributed copies of code snippets from Stack Overflow. 78

3.11 Five most common licenses of GitHub repositories matched in phase 3 con-
taining attributed or unattributed copies of code snippets from Stack Overflow. 78

4.1 Demographics of participants in samples S1-S3: Work time dedicated to soft-
ware development; GE : general experience (years), GRsem : general expertise
rating (semantic differential from 1=novice to 6=expert), JE : Java experience
(years), JRsem : Java expertise rating. 89

4.2 Correlation table for samples S1 - S3 showing Spearman’s ρ (one asterisk: α=
0.05, two asterisks: α = 0.01); GE : general experience (years), GRsem : general
expertise rating (semantic differential), JE : Java experience, JRsem : Java exper-
tise rating. 106

6.1 Overview of all evaluated similarity metrics (n = 134). 134
6.2 Correlation table with Spearman’s correlation coefficients ρ for different prop-

erties of Stack Overflow posts (p-value < 0.001 for all combinations). 149

Bibliography

[1] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. On code reuse from StackOver-
flow: An exploratory study on Android apps. Information and Software Technology,
88:148–158, 2017.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L. Mazurek, and
Christian Stransky. You Get Where You’re Looking For: The Impact Of Information
Sources on Code Security. In Michael Locasto, Vitaly Shmatikov, and Úlfar Erlingsson,
editors, 2016 IEEE Symposium on Security and Privacy (S&P 2016), pages 289–305, San
Jose, CA, USA, 2016. IEEE Computer Society.

[3] Achte Zivilkammer. AZ I-8 O 294/15. Landgericht Bochum, 2016.

[4] Phillip L. Ackerman and Margaret E. Beier. Chapter 9: Methods for Studying the Struc-
ture of Expertise: Psychometric Approaches. In K. Anders Ericsson, Neil Charness,
Paul J. Feltovich, and Robert R. Hoffman, editors, The Cambridge Handbook of Exper-
tise and Expert Performance, pages 147–165. Cambridge University Press, New York,
NY, USA, 2006.

[5] Brandy Agerbeck. The Graphic Facilitator’s Guide. loosetooth.com, Milton Keynes, UK,
2012.

[6] Alan Agresti. An Introduction to Categorical Data Analysis. John Wiley & Sons, Hobo-
ken, NJ, USA, 2nd edition, 2007.

[7] Aioobe. How to convert byte size into human readable format in java? http://
stackoverflow.com/a/3758880, 2010.

[8] Miltiadis Allamanis and Charles Sutton. Why, when, and what: Analyzing Stack Over-
flow questions by topic, type, and code. In Thomas Zimmermann, Massimiliano Di
Penta, and Sunghun Kim, editors, 10th International Working Conference on Mining
Software Repositories (MSR 2013), pages 53–56, San Francisco, CA, USA, 2013. IEEE.

[9] Daniel A. Almeida, Gail C. Murphy, Greg Wilson, and Michael Hoye. Investigating
whether and how software developers understand open source software licensing.
Empirical Software Engineering, 11(11):730, 2018.

[10] William Alsup. Oracle America, Inc v. Google, Inc. United States District Court for the
Northern District of California, 2012.

[11] American Psychological Association. Publication Manual of the American Psycholog-
ical Association. American Psychological Association, Washington, DC, USA, 6th edi-
tion, 2010.

[12] American Psychological Association. APA Dictionary of Psychology. American Psycho-
logical Association, Washington, DC, USA, 2nd edition, 2015.

http://stackoverflow.com/a/3758880
http://stackoverflow.com/a/3758880

174 Bibliography

[13] Le.. An, Ons Mlouki, Foutse Khomh, and Giuliano Antoniol. Stack Overflow: A Code
Laundering Platform? In Martin Pinzger, Gabriele Bavota, and Andrian Marcus, edi-
tors, 24th IEEE International Conference on Software Analysis, Evolution and Reengi-
neering (SANER 2017), pages 283–293, Klagenfurt, Austria, 2017. IEEE Computer Soci-
ety.

[14] Hayward P. Andres. A comparison of face-to-face and virtual software development
teams. Team Performance Management: An International Journal, 8(1/2):39–48, 2002.

[15] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who Should Fix This Bug? In Leon J.
Osterweil, H. Dieter Rombach, and Mary Lou Soffa, editors, 28th International Con-
ference on Software Engineering (ICSE 2006), pages 361–370, Shanghai, China, 2006.
ACM.

[16] Adnan Aziz, Tsung-Hsien Lee, and Amit Prakash. Elements of Programming Interviews.
CreateSpace Independent Publishing Platform, North Charleston, SC, USA, 2012.

[17] Earl Babbie. The practice of social research. Cengage Learning, 12th edition, 2010.

[18] Earl Babbie. The practice of social research. Cengage Learning, 13th edition, 2013.

[19] Ali Sajedi Badashian, Afsaneh Esteki, Ameneh Gholipour, Abram Hindle, and Eleni
Stroulia. Involvement, Contribution and Influence in GitHub and Stack Overflow.
In Joanna Ng, Jin Li, and Ken Wong, editors, 24th International Conference on Com-
puter Science and Software Engineering (CASCON 2014), pages 19–33, Markham, ON,
Canada, 2014. IBM / ACM.

[20] Sebastian Baltes. Sketches and Diagrams in Practice — Supplementary Material.
https://doi.org/10.5281/zenodo.818276, 2014.

[21] Sebastian Baltes. sbaltes/api-retriever on GitHub. https://doi.org/10.5281/
zenodo.1049419, 2017.

[22] Sebastian Baltes. sotorrent/db-scripts on GitHub. https://doi.org/10.5281/
zenodo.1116346, 2018.

[23] Sebastian Baltes. sotorrent/r-scripts on GitHub. https://doi.org/10.5281/
zenodo.1048185, 2018.

[24] Sebastian Baltes. SOTorrent: Reconstructing and Analyzing the Evolution of
Stack Overflow Posts — Supplementary Material. http://doi.org/10.5281/
zenodo.1201553, 2018.

[25] Sebastian Baltes. Usage and Attribution of Stack Overflow Code Snippets in GitHub
Projects — Supplementary Material. https://doi.org/10.5281/zenodo.
1148069, 2018.

[26] Sebastian Baltes. sotorrent/so-clones on GitHub. https://doi.org/10.5281/
zenodo.1472948, 2018.

https://doi.org/10.5281/zenodo.818276
https://doi.org/10.5281/zenodo.1049419
https://doi.org/10.5281/zenodo.1049419
https://doi.org/10.5281/zenodo.1116346
https://doi.org/10.5281/zenodo.1116346
https://doi.org/10.5281/zenodo.1048185
https://doi.org/10.5281/zenodo.1048185
http://doi.org/10.5281/zenodo.1201553
http://doi.org/10.5281/zenodo.1201553
https://doi.org/10.5281/zenodo.1148069
https://doi.org/10.5281/zenodo.1148069
https://doi.org/10.5281/zenodo.1472948
https://doi.org/10.5281/zenodo.1472948

Bibliography 175

[27] Sebastian Baltes. sotorrent/so-edit-viz on GitHub. https://doi.org/10.5281/
zenodo.1474203, 2018.

[28] Sebastian Baltes and Stephan Diehl. Sketches and diagrams in practice. In Shing-Chi
Cheung, Alessandro Orso, and Margaret-Anne D. Storey, editors, 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014), pages
530–541, Hong Kong, China, 2014. ACM.

[29] Sebastian Baltes and Stephan Diehl. Worse Than Spam: Issues In Sampling Software
Developers. In Marcela Genero, Andreas Jedlitschka, and Magne Jorgensen, editors,
10th International Symposium on Empirical Software Engineering and Measurement
(ESEM 2016), pages 52:1–52:6, Ciudad Real, Spain, 2016. ACM.

[30] Sebastian Baltes and Stephan Diehl. Towards a Theory of Software Development
Expertise — Supplementary Material. https://doi.org/10.5281/zenodo.
1299798, 2018.

[31] Sebastian Baltes and Stephan Diehl. Usage and Attribtion of Stack Overflow Code
Snippets in GitHub Projects. Empirical Software Engineering, Online First:1–37, 2018.

[32] Sebastian Baltes and Stephan Diehl. Towards a Theory of Software Development Ex-
pertise. In Gary Leavens, Alessandro Garcia, and Corina Pasareanu, editors, 26th ACM
Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2018), pages 187–200, Lake Buena Vista, FL, USA,
2018. ACM.

[33] Sebastian Baltes and Lorik Dumani. SOTorrent Data Set Version 2018-02-16. http:
//doi.org/10.5281/zenodo.1196296, 2018.

[34] Sebastian Baltes and Lorik Dumani. SOTorrent GitHub Page. https://github.
com/sotorrent, 2018.

[35] Sebastian Baltes and Lorik Dumani. sotorrent/metric-evaluation on GitHub. https:
//doi.org/10.5281/zenodo.1045823, 2018.

[36] Sebastian Baltes and Lorik Dumani. sotorrent/so-posthistory-extractor on GitHub.
https://doi.org/10.5281/zenodo.835046, 2018.

[37] Sebastian Baltes and Peter Schmitz. Linking Sketches and Diagrams to Source Code
Artifacts — Supplementary Material. https://doi.org/10.5281/zenodo.
1421678, 2018.

[38] Sebastian Baltes, Peter Schmitz, and Stephan Diehl. Linking sketches and diagrams to
source code artifacts. In Shing-Chi Cheung, Alessandro Orso, and Margaret-Anne D.
Storey, editors, 22nd ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (FSE 2014), pages 743–746, Hong Kong, China, 2014. ACM.

[39] Sebastian Baltes, Oliver Moseler, Fabian Beck, and Stephan Diehl. Navigate, Under-
stand, Communicate: How Developers Locate Performance Bugs. In Qing Wang,
Guenther Ruhe, Jeff Carver, and Oscar Dieste, editors, 9th International Symposium on

https://doi.org/10.5281/zenodo.1474203
https://doi.org/10.5281/zenodo.1474203
https://doi.org/10.5281/zenodo.1299798
https://doi.org/10.5281/zenodo.1299798
http://doi.org/10.5281/zenodo.1196296
http://doi.org/10.5281/zenodo.1196296
https://github.com/sotorrent
https://github.com/sotorrent
https://doi.org/10.5281/zenodo.1045823
https://doi.org/10.5281/zenodo.1045823
https://doi.org/10.5281/zenodo.835046
https://doi.org/10.5281/zenodo.1421678
https://doi.org/10.5281/zenodo.1421678

176 Bibliography

Empirical Software Engineering and Measurement (ESEM 2015), pages 225–234, Bei-
jing, China, 2015. IEEE.

[40] Sebastian Baltes, Oliver Moseler, Fabian Beck, and Stephan Diehl. How Developers Lo-
cate Performance Bugs — Supplementary Material. http://doi.org/10.5281/
zenodo.818592, 2015.

[41] Sebastian Baltes, Lorik Dumani, and Tobias Zeimetz. Dataset with manually validated
version histories of Stack Overflow posts. http://doi.org/10.5281/zenodo.
884909, 2017.

[42] Sebastian Baltes, Fabrice Hollerich, and Stephan Diehl. LivelySketches — Supplemen-
tary Material. https://doi.org/10.5281/zenodo.818197, 2017.

[43] Sebastian Baltes, Fabrice Hollerich, and Stephan Diehl. Round-Trip Sketches: Sup-
porting the Lifecycle of Software Development Sketches from Analog to Digital and
Back. In Kang Zhang, Ivan Beschastnikh, and Andrea Mocci, editors, 2017 IEEE Work-
ing Conference on Software Visualization (VISSOFT 2017), pages 94–98, Shanghai,
China, 2017. IEEE.

[44] Sebastian Baltes, Richard Kiefer, and Stephan Diehl. Attribution required: Stack over-
flow code snippets in GitHub projects. In Sebastián Uchitel, Alessandro Orso, and Mar-
tin P. Robillard, editors, 39th International Conference on Software Engineering (ICSE
2017), Companion Volume, pages 161–163, Buenos Aires, Argentina, 2017. IEEE Com-
puter Society.

[45] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. SOTorrent:
Reconstructing and Analyzing the Evolution Stack Overflow Posts. In Andy Zaidman,
Emily Hill, and Yasutaka Kamei, editors, 15th International Conference on Mining Soft-
ware Repositories (MSR 2018), pages 319–330, Gothenburg, Sweden, 2018. ACM.

[46] Sebastian Baltes, Jascha Knack, Daniel Anastasiou, Ralf Tymann, and Stephan Diehl.
(No) Influence of Continuous Integration on the Commit Activity in GitHub Projects.
In Olga Baysal and Tim Menzies, editors, 4th International Workshop on Software An-
alytics (SWAN 2018), pages 1–7, Lake Buena Vista, FL, USA, 2018. ACM.

[47] Sebastian Baltes, Christoph Treude, and Stephan Diehl. SOTorrent: Studying the Ori-
gin, Evolution, and Usage of Stack Overflow Code Snippets. In Margaret-Anne Storey,
Bram Adams, and Sonia Haiduc, editors, 16th International Conference on Mining
Software Repositories (MSR 2019), Montreal, QC, Canada, 2019. IEEE.

[48] Rosaline S. Barbour. Checklists for improving rigour in qualitative research: A case of
the tail wagging the dog? British Medical Journal, 322(7294):1115, 2001.

[49] James E. Bartlett, II, Joe W. Kotrlik, and Chadwick C. Higgins. Organizational Research:
Determining Appropriate Sample Size in Survey Research. Information Technology,
Learning, and Performance Journal, 19(1):43–50, 2001.

[50] Tanja Gabriele Baudson and Franzis Preckel. mini-q: Intelligenzscreening in drei
Minuten. Diagnostica, 62(3):182–197, 2016. ISSN 0012-1924.

http://doi.org/10.5281/zenodo.818592
http://doi.org/10.5281/zenodo.818592
http://doi.org/10.5281/zenodo.884909
http://doi.org/10.5281/zenodo.884909
https://doi.org/10.5281/zenodo.818197

Bibliography 177

[51] Fabian Beck, Oliver Moseler, Stephan Diehl, and Günter Daniel Rey. In situ under-
standing of performance bottlenecks through visually augmented code. In Huzefa
Kagdi, Denys Poshyvanyk, and Massimiliano Di Penta, editors, 21st International Con-
ference on Program Comprehension (ICPC 2013), pages 63–72, San Francisco, CA, USA,
2013. IEEE Computer Society.

[52] Fabian Beck, Stefan Gulan, Benjamin Biegel, Sebastian Baltes, and Daniel Weiskopf.
RegViz: Visual debugging of regular expressions. In Pankaj Jalote, Lionel C. Briand, and
André van der Hoek, editors, 36th International Conference on Software Engineering
Companion (ICSE 2014), pages 504–507, Hyderabad, India, 2014. ACM.

[53] Sarah Beecham, Nathan Baddoo, Tracy Hall, Hugh Robinson, and Helen Sharp. Moti-
vation in Software Engineering: A systematic literature review. Information and Soft-
ware Technology, 50(9):860–878, 2008.

[54] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and Ettore Merlo. Com-
parison and evaluation of clone detection tools. IEEE Transactions on Software Engi-
neering, 33(9):577–591, 2007.

[55] Gunnar R. Bergersen, Dag I. K. Sjoberg, and Tore Dyba. Construction and Validation
of an Instrument for Measuring Programming Skill. IEEE Transactions on Software
Engineering, 40(12):1163–1184, 2014.

[56] Li Bian and Roy Shilkrot. PalimPost: Information convergence using sticky notes. In
Dominique Guinard, Vlad Trifa, and Erik Wilde, editors, 2nd International Workshop
on Web of Things (WoT 2011), pages 13–18, San Francisco, CA, USA, 2011. ACM.

[57] Benjamin Biegel, Sebastian Baltes, Bob Prevos, and Stephan Diehl. VisualCues: Vi-
sually explaining source code in computer science education. In Zhen Li, Claudia
Ermel, and Scott D. Fleming, editors, 2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2015), pages 89–93, Atlanta, GA, USA, 2015. IEEE
Computer Society.

[58] Benjamin Biegel, Sebastian Baltes, Ivan Scarpellini, and Stephan Diehl. Code Basket:
Making Developers’ Mental Model Visible and Explorable. In Kelly Blincoe, Daniela E.
Damian, Giuseppe Valetto, and James D. Herbsleb, editors, 2nd IEEE/ACM Interna-
tional Workshop on Context for Software Development (CSD 2015), pages 20–24, Flo-
rence, Italy, 2015. IEEE Computer Society.

[59] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swaminathan.
Mining Email Social Networks. In Stephan Diehl, Harald C. Gall, and Ahmed E. Has-
san, editors, 3rd International Workshop on Mining Software Repositories (MSR 2006),
pages 137–143, Shanghai, China, 2006. ACM.

[60] Tanja Blascheck, Fabian Beck, Sebastian Baltes, Thomas Ertl, and Daniel Weiskopf.
Visual analysis and coding of data-rich user behavior. In Gennady L. Andrienko, Shixia
Liu, and John T. Stasko, editors, 2016 IEEE Conference on Visual Analytics Science and
Technology (VAST 2016), pages 141–150, Baltimore, MD, USA, 2016. IEEE Computer
Society.

178 Bibliography

[61] Ted Boren and Judith Ramey. Thinking aloud: Reconciling theory and practice. IEEE
Transactions on Professional Communication, 43(3):261–278, 2000.

[62] Amiangshu Bosu, Christopher S. Corley, Dustin Heaton, Debarshi Chatterji, Jeffrey C.
Carver, and Nicholas A. Kraft. Building reputation in StackOverflow: An empirical
investigation. In Thomas Zimmermann, Massimiliano Di Penta, and Sunghun Kim,
editors, 10th International Working Conference on Mining Software Repositories (MSR
2013), pages 89–92, San Francisco, CA, USA, 2013. IEEE.

[63] Peter Brandl, Michael Haller, Juergen Oberngruber, and Christian Schafleitner. Bridg-
ing the gap between real printouts and digital whiteboard. In Stefano Levialdi, edi-
tor, 2008 Working Conference on Advanced Visual Interfaces (AVI 2008), pages 31–38,
Naples, Italy, 2008. ACM.

[64] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. Example-
centric programming: Integrating web search into the development environment. In
Elizabeth Mynatt, Keith Edwards, and Tom Rodden, editors, 2010 Conference on Hu-
man Factors in Computing Systems (CHI 2010), pages 513–522, Atlanta, GA, USA, 2010.
ACM.

[65] Stacy M. Branham, Gene Golovchinsky, Scott Carter, and Jacob T. Biehl. Let’s go
from the whiteboard: Supporting transitions in work through whiteboard capture and
reuse. In Elizabeth Mynatt, Keith Edwards, and Tom Rodden, editors, 2010 Conference
on Human Factors in Computing Systems (CHI 2010), pages 75–84, Atlanta, GA, USA,
2010. ACM.

[66] Lionel Briand. Embracing the Engineering Side of Software Engineering. IEEE Soft-
ware, July/August:92–95, 2012.

[67] Ricardo Britto, Darja Smite, and Lars-Ola Damm. Experiences from Measuring Learn-
ing and Performance in Large-Scale Distributed Software Development. In Marcela
Genero, Andreas Jedlitschka, and Magne Jorgensen, editors, 10th International Sym-
posium on Empirical Software Engineering and Measurement (ESEM 2016), pages 1–6,
Ciudad Real, Spain, 2016. ACM.

[68] John Brooke. SUS - A quick and dirty usability scale. Usability evaluation in industry,
189(194):4–7, 1996.

[69] Barry Brown, Alexandra Weilenmann, Donald McMillan, and Airi Lampinen. Five
Provocations for Ethical HCI Research. Conference on Human Factors in Computing
Systems (CHI 2016), 2016.

[70] Judy Brown, Gitte Lindgaard, and Robert Biddle. Stories, Sketches, and Lists: Develop-
ers and Interaction Designers Interacting Through Artefacts. In Lars Bernard, Anders
Friis-Christensen, Hardy Pundt, and Irene Compte, editors, 11th Agile Development
Conference (AGILE 2008), pages 39–50, Girona, Spain, 2008. IEEE.

[71] Philip Burnard, P. Gill, K. Stewart, E. Treasure, and B. Chadwick. Analysing and pre-
senting qualitative data. British Dental Journal, 204(8):429–432, 2008.

Bibliography 179

[72] Steven Burrows, Seyed M. M. Tahaghoghi, and Justin Zobel. Efficient plagiarism de-
tection for large code repositories. Software—Practice and Experience, 37(2):151–176,
2007.

[73] Kelly Caine. Local Standards for Sample Size at CHI. In Jofish Kaye, Allison Druin, Cliff
Lampe, Dan Morris, and Juan Pablo Hourcade, editors, 2016 Conference on Human
Factors in Computing Systems (CHI 2016), pages 981–992, San Jose, CA, USA, 2016.
ACM.

[74] Brock Angus Campbell and Christoph Treude. NLP2Code: Code Snippet Content As-
sist via Natural Language Tasks. In Hong Mei, Lu Zhang, and Thomas Zimmermann,
editors, 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME 2017), pages 628–632, Shanghai, China, 2017. IEEE Computer Society.

[75] Guillermo Campitelli and Fernand Gobet. Deliberate Practice: Necessary But Not Suf-
ficient. Current Directions in Psychological Science, 20(5):280–285, 2011.

[76] Pierre Carbonnelle. PYPL PopularitY of Programming Language: March 2016. http:
//pypl.github.io/PYPL.html, 2016.

[77] CASRO. Code of Standards and Ethics, 2011.

[78] Aileen Cater-Steel, Mark Toleman, and Terry Rout. Addressing the Challenges of Repli-
cations of Surveys in Software Engineering Research. In Ross Jeffery, June Verner, and
Guilherme H. Travassos, editors, 2005 International Symposium on Empirical Software
Engineering (ISESE 2005), pages 10–pp, Noosa Heads, Queensland, Australia, 2005.
IEEE.

[79] Michael J. Cavaretta. Open Source Issues in Mergers & Acquisitions. http://www.
mbbp.com/news/open-source-issues, 2015.

[80] Ned Chapin, Joanne E. Hale, Khaled Md Khan, Juan F. Ramil, and Wui-Gee Tan. Types
of software evolution and software maintenance. Journal of Software Maintenance, 13
(1):3–30, 2001.

[81] Kathy Charmaz. Constructing grounded theory. Sage, Thousand Oaks, CA, USA, 2nd
edition, 2014.

[82] Chunyang Chen, Zhenchang Xing, and Yang Liu. By the Community & For the Com-
munity: A Deep Learning Approach to Assist Collaborative Editing in Q&A Sites. Pro-
ceedings of the ACM on Human-Computer Interaction, 1:32:1–32:21, 2017.

[83] Qi Chen, John G. Hosking, and John C. Grundy. An e-whiteboard application to sup-
port early design-stage sketching of UML diagrams. In John Hosking and Philip Cox,
editors, 2003 IEEE Symposium on Human Centric Computing Languages and Environ-
ments (HCC 2003), pages 219–226, Auckland, New Zealand, 2003. IEEE Computer So-
ciety.

[84] Mauro Cherubini, Gina Venolia, Robert DeLine, and Andrew J. Ko. Let’s go to the white-
board: How and why software developers use drawings. In Mary Beth Rosson and

http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://www.mbbp.com/news/open-source-issues
http://www.mbbp.com/news/open-source-issues

180 Bibliography

David J. Gilmore, editors, 2007 Conference on Human Factors in Computing Systems
(CHI 2007), pages 557–566, San Jose, CA, USA, 2007. ACM.

[85] Michelene T. H. Chi. Chapter 2: Two Approaches to the Study of Expert’s Character-
istics. In K. Anders Ericsson, Neil Charness, Paul J. Feltovich, and Robert R. Hoffman,
editors, The Cambridge Handbook of Expertise and Expert Performance, pages 21–30.
Cambridge University Press, New York, NY, USA, 2006.

[86] Davide Chicco. Ten quick tips for machine learning in computational biology. BioData
mining, 10(1):35, 2017.

[87] Jan Chong and Tom Hurlbutt. The social dynamics of pair programming. In John
Knight, Wolfgang Emmerich, and Gregg Rothermel, editors, 29th International Con-
ference on Software Engineering (ICSE 2007), pages 354–363, Minneapolis, MN, USA,
2007. IEEE Computer Society.

[88] Earl Chrysler. Some Basic Determinants of Computer Programming Productivity.
Communications of the ACM, 21(6):472–483, 1978.

[89] K. Alec Chrystal and Paul D. Mizen. Goodhart’s law: Its origins, meaning and impli-
cations for monetary policy. Central banking, monetary theory and practice: Essays in
honour of Charles Goodhart, 1:221–243, 2003.

[90] Eunyoung Chung, Carlos Jensen, Koji Yatani, Victor Kuechler, and Khai N. Truong.
Sketching and Drawing in the Design of Open Source Software. In Christopher D.
Hundhausen, Emmanuel Pietriga, Paloma D\’ıaz, and Mary Beth Rosson, editors,
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2010),
pages 195–202, Leganés-Madrid, Spain, 2010. IEEE Computer Society.

[91] Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal questions.
Psychological bulletin, 114(3):494, 1993.

[92] William G. Cochran. Sampling Techniques. John Wiley & Sons, Hoboken, NJ, USA, 3rd
edition, 1977.

[93] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge, Mah-
wah, NJ, USA, 2nd edition, 1988.

[94] Jacob Cohen. A power primer. Psychological bulletin, 112(1):155, 1992.

[95] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using metrics to evaluate software sys-
tem maintainability. Computer, 27(8):44–49, 1994. ISSN 0018-9162.

[96] Jeff Collmann and Sorin Adam Matei. Ethical Reasoning in Big Data. Springer, 2016.

[97] Reidar Conradi and Bernhard Westfechtel. Version models for software configuration
management. ACM Computing Surveys (CSUR), 30(2):232–282, 1998.

[98] Juliet Corbin and Anselm Strauss. Basics of qualitative research. SAGE Publications,
Thousand Oaks, CA, USA, 3rd edition, 2008.

Bibliography 181

[99] Jacqueline Scott Corley. Artifex Software, Inc v. Hancom, Inc. United States District
Court for the Northern District of California, 2017.

[100] Valerio Cosentino, Javier Luis, and Jordi Cabot. Findings from GitHub: Methods,
datasets and limitations. In Miryung Kim, Romain Robbes, and Christian Bird, edi-
tors, 13th International Conference on Mining Software Repositories (MSR 2016), pages
137–141, Austin, TX, USA, 2016. ACM.

[101] Creative Commons Corporation. Attribution-ShareAlike 3.0 Unported. https://
creativecommons.org/licenses/by-sa/3.0/legalcode, 2007.

[102] Creative Commons Corporation. Compatible Licenses. https:
//creativecommons.org/share-your-work/licensing-
considerations/compatible-licenses/, 2017.

[103] Creative Commons Corporation. Frequently Asked Questions. https:
//creativecommons.org/faq/#can-i-apply-a-creative-commons-
license-to-software, 2017.

[104] Shirley Cruz, Fabio Q. B. da Silva, and Luiz Fernando Capretz. Forty years of research
on personality in software engineering: A mapping study. Computers in Human Be-
havior, 46:94–113, 2015.

[105] Bill Curtis. Fifteen years of psychology in software engineering: Individual differences
and cognitive science. In T. Straeter, William E. Howden, and Jean-Claude Rault, edi-
tors, 7th International Conference on Software Engineering (ICSE 1984), pages 97–106,
Orlando, FL, USA, 1984. IEEE Press.

[106] Raimund Dachselt, Mathias Frisch, and Eike Decker. Enhancing UML sketch tools
with digital pens and paper. In Alexandru Telea, Carsten Goerg, and Steven P. Reiss,
editors, 2010 Symposium on Software Visualization (SoftVis 2010), pages 203–204, Salt
Lake City, UT, USA, 2010. ACM.

[107] Daniela Damian, Armin Eberlein, Mildred L.G. Shaw, and Brian R. Gaines. Using Dif-
ferent Communication Media in Requirements Negotiation. IEEE Software, May/June:
28–36, 2000.

[108] Christian Heide Damm, Klaus Marius Hansen, and Michael Thomsen. Tool support for
cooperative object-oriented design: Gesture based modelling on an electronic white-
board. In Thea Turner and Gerd Szwillus, editors, 2000 Conference on Human factors
in computing systems (CHI 2000), pages 518–525, The Hague, The Netherlands, 2000.
ACM.

[109] Uri Dekel and James D. Herbsleb. Notation and representation in collaborative object-
oriented design: An observational study. In Richard P. Gabriel, David F. Bacon,
Cristina Videira Lopes, and Guy L. Steele Jr., editors, 22nd ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2007),
pages 261–280, Montreal, QC, Canada, 2007. ACM.

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/share-your-work/licensing-considerations/compatible-licenses/
https://creativecommons.org/share-your-work/licensing-considerations/compatible-licenses/
https://creativecommons.org/share-your-work/licensing-considerations/compatible-licenses/
https://creativecommons.org/faq/#can-i-apply-a-creative-commons-license-to-software
https://creativecommons.org/faq/#can-i-apply-a-creative-commons-license-to-software
https://creativecommons.org/faq/#can-i-apply-a-creative-commons-license-to-software

182 Bibliography

[110] Prem Devanbu, Thomas Zimmermann, and Christian Bird. Belief & Evidence in Em-
pirical Software Engineering. In Laura Dillon, Willem Visser, and Laurie Williams, ed-
itors, 38th International Conference on Software Engineering (ICSE 2016), pages 108–
119, Austin, TX, USA, 2016. ACM.

[111] Oscar Dieste, Alejandrina M. Aranda, Fernando Uyaguari, Burak Turhan, Ayse Tosun,
Davide Fucci, Markku Oivo, and Natalia Juristo. Empirical evaluation of the effects
of experience on code quality and programmer productivity: An exploratory study.
Empirical Software Engineering, 22(5):2457–2542, 2017.

[112] Don A. Dillman, Michael D. Sinclair, and Jon R. Clark. Effects of questionnaire length,
respondent-friendly design, and a difficult question on response rates for occupant-
addressed census mail surveys. Public Opinion Quarterly, 57(3):289–304, 1993.

[113] Stuart E. Dreyfus. The five-stage model of adult skill acquisition. Bulletin of science,
technology & society, 24(3):177–181, 2004.

[114] Stuart E. Dreyfus and Hubert L. Dreyfus. A five-stage model of the mental activities
involved in directed skill acquisition. University of California, Berkeley, ORC 80-2:1–
22, 1980.

[115] Peter F. Drucker. Landmarks of Tomorrow. Harper & Brothers, New York, NY, USA,
1957.

[116] Peter F. Drucker. Management Challenges for the 21st Century. HarperCollins, New
York, NY, USA, 1999.

[117] Maarten Duijn, Adam Kucera, and Alberto Bacchelli. Quality Questions Need Quality
Code: Classifying Code Fragments on Stack Overflow. In Massimiliano Di Penta, Mar-
tin Pinzger, and Romain Robbes, editors, 12th Working Conference on Mining Software
Repositories (MSR 2015), pages 410–413, Florence, Italy, 2015. IEEE Computer Society.

[118] Lorik Dumani and Sebastian Baltes. sotorrent/so-posthistory-gt on GitHub. https:
//doi.org/10.5281/zenodo.1045935, 2017.

[119] Lorik Dumani and Sebastian Baltes. sotorrent/posthistory-comparator-gt-cs on
GitHub. https://doi.org/10.5281/zenodo.1474238, 2018.

[120] Olive Jean Dunn. Multiple comparisons among means. Journal of the American Sta-
tistical Association, 56(293):52–64, 1961.

[121] Alastair Dunsmore and Marc Roper. A comparative evaluation of program compre-
hension measures. Department of Computer Science, University of Strathclyde, EFoCS-
35-2000:1–7, 2000.

[122] Zoran Duric and Dragan Gasevic. A source code similarity system for plagiarism de-
tection. The Computer Journal, 56(1):70–86, 2013.

[123] D.W. Ethics of scraping "public" data sources to obtain email addresses. http://
academia.stackexchange.com/q/56598, 2015.

https://doi.org/10.5281/zenodo.1045935
https://doi.org/10.5281/zenodo.1045935
https://doi.org/10.5281/zenodo.1474238
http://academia.stackexchange.com/q/56598
http://academia.stackexchange.com/q/56598

Bibliography 183

[124] Tore Dyba, Neil Maiden, and Robert Glass. The Reflective Software Engineer: Reflec-
tive Practice. IEEE Software, July/August:32–36, 2014.

[125] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. Chapter
11: Selecting Empirical Methods for Software Engineering Research. In Forrest Shull,
Janice Singer, and Dag I.K. Sjoberg, editors, Guide to Advanced Empirical Software En-
gineering, pages 285–311. Springer, London, UK, 2008.

[126] Khaled El Emam. Ethics and open source. Empirical Software Engineering, 6(4):291–
292, 2001.

[127] Electronic Frontier Foundation. Oracle v. Google. https://www.eff.org/
cases/oracle-v-google, 2018.

[128] Arnoud Engelfriet. What is the license status of StackOverflow code snip-
pets? https://legalict.com/software/what-is-the-license-
status-of-stackoverflow-code-snippets/, 2016.

[129] K. Anders Ericsson. Chapter 1: An Introduction to Cambridge Handbook of Expertise
and Expert Performance: Its Development, Organization, and Content. In K. Anders
Ericsson, Neil Charness, Paul J. Feltovich, and Robert R. Hoffman, editors, The Cam-
bridge Handbook of Expertise and Expert Performance, pages 3–19. Cambridge Univer-
sity Press, New York, NY, USA, 2006.

[130] K. Anders Ericsson. Chapter 38: The Influence of Experience and Deliberate Prac-
tice on the Development of Superior Expert Performance. In K. Anders Ericsson, Neil
Charness, Paul J. Feltovich, and Robert R. Hoffman, editors, The Cambridge Handbook
of Expertise and Expert Performance, pages 683–703. Cambridge University Press, New
York, NY, USA, 2006.

[131] K. Anders Ericsson and Jacqui Smith. Prospects and limits of the empirical study of
expertise: An introduction. In K. Anders Ericsson and Jacqui Smith, editors, Toward a
general theory of expertise: Prospects and limits, volume 344, pages 1–38. Cambridge
University Press, New York, NY, USA, 1991.

[132] K. Anders Ericsson, Ralf T. Krampe, and Clemens Tesch-Römer. The role of deliberate
practice in the acquisition of expert performance. Psychological review, 100(3):363,
1993.

[133] K. Anders Ericsson, Neil Charness, Paul J. Feltovich, and Robert R. Hoffman, editors.
The Cambridge Handbook of Expertise and Expert Performance. Cambridge University
Press, New York, NY, USA, 2006.

[134] K. Anders Ericsson, Michael J. Prietula, and Edward T. Cokely. The making of an expert.
Harvard business review, 85(7/8):114, 2007.

[135] Andy Evans, Stuart Kent, and Bran Selic, editors. UML 2000 - The Unified Modeling
Language: Advancing the Standard , 3rd International Conference, volume 1939 of Lec-
ture Notes in Computer Science, York, UK, 2000. Springer.

https://www.eff.org/cases/oracle-v-google
https://www.eff.org/cases/oracle-v-google
https://legalict.com/software/what-is-the-license-status-of-stackoverflow-code-snippets/
https://legalict.com/software/what-is-the-license-status-of-stackoverflow-code-snippets/

184 Bibliography

[136] Dmitry Fazunenko. Get rid of the humanReadableByteCount() method in open-
jdk/hotspot. https://bugs.openjdk.java.net/browse/JDK-8170860,
2016.

[137] Paul J. Feltovich, Michael J. Prietula, and K. Anders Ericsson. Chapter 4: Studies of Ex-
pertise from Psychological Perspectives. In K. Anders Ericsson, Neil Charness, Paul J.
Feltovich, and Robert R. Hoffman, editors, The Cambridge Handbook of Expertise and
Expert Performance, pages 41–67. Cambridge University Press, New York, NY, USA,
2006.

[138] Norman Fenton and James Bieman. Software Metrics: A Rigorous and Practical Ap-
proach. CRC Press, Boca Raton, FL, USA, 2015.

[139] Casey Fiesler, Alyson Young, Tamara Peyton, Amy S. Bruckman, Mary Gray, Jeff Han-
cock, and Wayne Lutters. Ethics for studying online sociotechnical systems in a big
data world. In Dan Cosley, Andrea Forte, Luigina Ciolfi, and David W. McDonald, ed-
itors, 18th ACM Conference on Computer Supported Cooperative Work & Social Com-
puting (CSCW 2015), pages 289–292, Vancouver, BC, Canada, 2015. ACM.

[140] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin Acar,
Michael Backes, and Sascha Fahl. Stack Overflow Considered Harmful? The Impact
of Copy&Paste on Android Application Security. In Kevin R. B. Butler, Úlfar Erlingsson,
and Bryan Parno, editors, 2017 IEEE Symposium on Security and Privacy (S&P 2017),
pages 121–136, San Jose, CA, USA, 2017. IEEE Computer Society.

[141] Jonathan Fish and Stephen Scrivener. Amplifying the mind’s eye: Sketching and visual
cognition. Leonardo, 23(1):117–126, 1990.

[142] Danyel Fisher, David W. McDonald, Andrew L. Brooks, and Elizabeth F. Churchill.
Terms of service, ethics, and bias: Tapping the social web for CSCW research. Panel
discussion at the 2010 ACM Conference on Computer Supported Cooperative Work
(CSCW 2010), 2010.

[143] Andrew Forward and Timothy Lethbridge. The relevance of software documentation,
tools and technologies: A survey. In Ethan Munson, Richard Furuta, and Jonathan I.
Maletic, editors, 2002 ACM Symposium on Document Engineering (DocEng 2002),
pages 26–33, McLean, VA, USA, 2002. ACM.

[144] Thomas Fritz, Gail C. Murphy, and Emily Hill. Does a Programmer’s Activity Indicate
Knowledge of Code? In Ivica Crnkovic and Antonia Bertolino, editors, 6th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE 2007), pages 341–350,
Dubrovnik, Croatia, 2007. ACM.

[145] Ron Garland. The Mid-Point on a Rating Scale: Is it Desirable? Marketing Bulletin, 2
(Research Note 3):66–70, 1991.

[146] Daniel M. German and Ahmed E. Hassan. License integration patterns: Addressing
license mismatches in component-based development. In Stephen Fickas, Joanne M.

https://bugs.openjdk.java.net/browse/JDK-8170860

Bibliography 185

Atlee, and Paola Inverardi, editors, 31st International Conference on Software Engineer-
ing (ICSE 2009), pages 188–198, Vancouver, BC, Canada, 2009. IEEE Computer Society.

[147] Daniel M. German, Massimiliano Di Penta, Yann-Gael Gueheneuc, and Giuliano An-
toniol. Code siblings: Technical and legal implications of copying code between appli-
cations. In Michael W. Godfrey and Jim Whitehead, editors, 6th International Working
Conference on Mining Software Repositories (MSR 2009), pages 81–90, Vancouver, BC,
Canada, 2009. IEEE Computer Society.

[148] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. Some From Here, Some
From There: Cross-Project Code Reuse in GitHub. In Jesus M. Gonzalez-Barahona,
Abram Hindle, and Lin Tan, editors, 14th International Conference on Mining Software
Repositories (MSR 2017), pages 291–301, Buenos Aires, Argentina, 2017. IEEE Com-
puter Society.

[149] ghtorrent.org. Request for deletion #32. https://github.com/ghtorrent/
ghtorrent.org/issues/32, 2016.

[150] Robert D. Gibbons, Donald R. Hedeker, and John M. Davis. Estimation of effect size
from a series of experiments involving paired comparisons. Journal of Educational
Statistics, 18(3):271–279, 1993.

[151] GitHub Inc. Choosealicense.com: No License. https://choosealicense.com/
no-license/, 2017.

[152] GitHub Inc. GitHub Developer – API. https://developer.github.com/v3/,
2017.

[153] GitHub Inc. The State of the Octoverse 2017. https://octoverse.github.
com/, 2018.

[154] Barney G. Glaser and Anselm L. Strauss. The Discovery of Grounded Theory: Strategies
for Qualitative Research. Aldine Transaction, New Brunswick, NJ, USA, 1967.

[155] Michael W. Godfrey and Daniel M. German. The past, present, and future of software
evolution. In Hausi Muller, Scott Tilley, and Kenny Wong, editors, Frontiers of Software
Maintenance (FoSM 2008), pages 129–138, Beijing, China, 2008. IEEE.

[156] Lewis R. Goldberg. A broad-bandwidth, public domain, personality inventory mea-
suring the lower-level facets of several five-factor models. Personality psychology in
Europe, 7(1):7–28, 1999.

[157] Gabriela Goldschmidt. The backtalk of self-generated sketches. Design Issues, 19(1):
72–88, 2003.

[158] Gabriela Goldschmidt. Manual Sketching: Why Is It Still Relevant? In Sabine Am-
mon and Remei Capdevila-Werning, editors, The Active Image, pages 77–97. Springer,
Berlin, Germany, 2017.

[159] Charles A. E. Goodhart. Monetary Theory and Practice: The UK Experience. Macmillan
Press, London, UK, 1984.

https://github.com/ghtorrent/ghtorrent.org/issues/32
https://github.com/ghtorrent/ghtorrent.org/issues/32
https://choosealicense.com/no-license/
https://choosealicense.com/no-license/
https://developer.github.com/v3/
https://octoverse.github.com/
https://octoverse.github.com/

186 Bibliography

[160] Google Cloud Platform. Stack Overflow Data. https://cloud.google.com/
bigquery/public-data/stackoverflow, 2017.

[161] Google Cloud Platform. GitHub Data. https://cloud.google.com/
bigquery/public-data/github, 2017.

[162] Google Cloud Platform. GitHub Data. https://cloud.google.com/
bigquery/public-data/github, 2018.

[163] Tony Gorschek, Ewan D. Tempero, and Lefteris Angelis. On the use of software de-
sign models in software development practice: An empirical investigation. Journal of
Systems and Software, 95:176–193, 2014.

[164] Georgios Gousios. The GHTorrent dataset and tool suite. In Thomas Zimmermann,
Massimiliano Di Penta, and Sunghun Kim, editors, 10th International Working Confer-
ence on Mining Software Repositories (MSR 2013), pages 233–236, San Francisco, CA,
USA, 2013. IEEE.

[165] Georgios Gousios. The Issue 32 incident - An update. http://gousios.gr/
blog/Issue-thirty-two.html, 2016/05/16.

[166] Georgios Gousios. GHTorrent on the Google cloud. http://ghtorrent.org/
gcloud.html, 2017.

[167] Georgios Gousios. GHTorrent on the Google cloud. http://ghtorrent.org/
gcloud.html, 2018.

[168] Frederick Gravetter and Lori-Ann Forzano. Research methods for the behavioral sci-
ences. Cengage Learning, 4th edition, 2012.

[169] Daniel Graziotin, Xiaofeng Wang, and Pekka Abrahamsson. How do you feel, devel-
oper? An explanatory theory of the impact of affects on programming performance.
PeerJ Computer Science, 1:e18, 2015.

[170] Shirley Gregor. The nature of theory in information systems. MIS quarterly, 30(3):
611–642, 2006.

[171] Lucas Gren. The Links Between Agile Practices, Interpersonal Conflict, and Perceived
Productivity. In Emilia Mendes, Steve Counsell, and Kai Petersen, editors, 21st Interna-
tional Conference on Evaluation and Assessment in Software Engineering (EASE 2017),
pages 292–297, Karlskrona, Sweden, 2017. ACM.

[172] François Guimbretière. Paper augmented digital documents. In Joseph A. Konstan,
Gregory Abowd, and Blair MacIntyre, editors, 16th Annual ACM Symposium on User
Interface Software and Technology (UIST 2003), pages 51–60, Vancouver, BC, Canada,
2003. ACM.

[173] David Z. Hambrick and Elizabeth J. Meinz. Limits on the Predictive Power of Domain-
Specific Experience and Knowledge in Skilled Performance. Current Directions in Psy-
chological Science, 20(5):275–279, 2011.

https://cloud.google.com/bigquery/public-data/stackoverflow
https://cloud.google.com/bigquery/public-data/stackoverflow
https://cloud.google.com/bigquery/public-data/github
https://cloud.google.com/bigquery/public-data/github
https://cloud.google.com/bigquery/public-data/github
https://cloud.google.com/bigquery/public-data/github
http://gousios.gr/blog/Issue-thirty-two.html
http://gousios.gr/blog/Issue-thirty-two.html
http://ghtorrent.org/gcloud.html
http://ghtorrent.org/gcloud.html
http://ghtorrent.org/gcloud.html
http://ghtorrent.org/gcloud.html

Bibliography 187

[174] Tracy Hammond and Randall Davis. Tahuti: A geometrical sketch recognition system
for UML class diagrams. In John W. Finnegan and Dave Shreiner, editors, 33rd Interna-
tional Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2006),
page 25, Boston, MA, USA„ 2006. ACM.

[175] Jo E. Hannay, Dag I. K. Sjoberg, and Tore Dyba. A systematic review of theory use in
software engineering experiments. IEEE Transactions on Software Engineering, 33(2):
87–107, 2007.

[176] Owen Hargie, editor. The Handbook of Communication Skills. Routledge, London, UK,
3rd edition, 2006.

[177] Eszter Hargittai. Is bigger always better? Potential biases of big data derived from
social network sites. The ANNALS of the American Academy of Political and Social
Science, 659(1):63–76, 2015.

[178] James D. Herbsleb and Audris Mockus. Formulation and preliminary test of an empir-
ical theory of coordination in software engineering. In Jukka Paakki and Paola Inver-
ardi, editors, 4th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundations of Software Engineering
(ESEC/FSE 2003), pages 138–137, Helsinki, Finland, 2003. ACM.

[179] Dennis E. Hinkle, William Wiersma, and Stephen G. Jurs. Applied statistics for the be-
havioral sciences. Rand McNally College Publishing, Skokie, IL, USA, 1979.

[180] Vera Hoorens. Self-enhancement and superiority biases in social comparison. Euro-
pean review of social psychology, 4(1):113–139, 1993.

[181] Andy Hunt. Pragmatic Thinking and Learning: Refactor Your Wetware (Pragmatic Pro-
grammers). Pragmatic bookshelf, Raleigh, NC, USA, 2008.

[182] Earl Hunt. Chapter 3: Expertise, Talent, and Social Encouragement. In K. Anders Eric-
sson, Neil Charness, Paul J. Feltovich, and Robert R. Hoffman, editors, The Cambridge
Handbook of Expertise and Expert Performance, pages 31–38. Cambridge University
Press, New York, NY, USA, 2006.

[183] Susan Jamieson. Likert scales: How to (ab)use them. Medical Education, 38(12):1217–
1218, 2004.

[184] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Understanding
and detecting real-world performance bugs. In Jan Vitek, Haibo Lin, and Frank Tip,
editors, ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2012), pages 77–88, Beijing, China, 2012. ACM.

[185] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bowdidge.
Why don’t software developers use static analysis tools to find bugs? In David Notkin,
Betty H. C. Cheng, and Klaus Pohl, editors, 35th International Conference on Software
Engineering (ICSE 2013), pages 672–681, San Francisco, CA, USA, 2013. IEEE Computer
Society.

188 Bibliography

[186] R. Burke Johnson, Anthony J. Onwuegbuzie, and Lisa A. Turner. Toward a definition of
mixed methods research. Journal of mixed methods research, 1(2):112–133, 2007.

[187] Capers Jones. Applied Software Measurement: Global Analysis of Productivity and
Quality. McGraw-Hill Education, New York, NY, USA, 3rd edition, 2008.

[188] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner. Do
Code Clones Matter? In Stephen Fickas, Joanne M. Atlee, and Paola Inverardi, ed-
itors, 31st International Conference on Software Engineering (ICSE 2009), pages 485–
495, Vancouver, BC, Canada, 2009. IEEE Computer Society.

[189] Victor Jupp, editor. The SAGE Dictionary of Social Research Methods. SAGE Publica-
tions, 2006.

[190] Judge Kaess, Judge Müller, and Judge Rieger. Welte v. Sitecom Deutschland GmbH.
District Court of Munich I, 2004.

[191] Huzefa H. Kagdi, Maen Hammad, and Jonathan I. Maletic. Who can help me with this
source code change? In Fuging Yang, Scott Tilley, Hong Mei, and Kenny Wong, editors,
24th IEEE International Conference on Software Maintenance (ICSM 2008), pages 157–
166, Beijing, China, 2008. IEEE Computer Society.

[192] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. Germán,
and Daniela Damian. The promises and perils of mining GitHub. In Premkumar T.
Devanbu, Sung Kim, and Martin Pinzger, editors, 11th Working Conference on Mining
Software Repositories (MSR 2014), pages 92–101, Hyderabad, India, 2014. ACM.

[193] Eirini Kalliamvakou, Christian Bird, Thomas Zimmermann, Andrew Begel, Robert De-
Line, and Daniel M. German. What Makes a Great Manager of Software Engineers?
IEEE Transactions on Software Engineering, Early Access Articles(1):1, 2017.

[194] Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl Brereton, Stu-
art M. Charters, Shirley Gibbs, and Amnart Pohthong. Robust Statistical Methods for
Empirical Software Engineering. Empirical Software Engineering, 22(2):579–630, 2017.

[195] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W. Jones,
David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Preliminary guidelines for
empirical research in software engineering. IEEE Transactions on Software Engineer-
ing, 28(8):721–734, 2002.

[196] Andrew J. Ko and Bob Uttl. Individual differences in program comprehension strate-
gies in unfamiliar programming systems. In Hausi Muller, Ken Wong, and Rainer
Koschke, editors, 11th International Workshop on Program Comprehension (IWPC
2003), pages 175–184, Portland, OR, USA, 2003. IEEE Computer Society.

[197] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. An Exploratory
Study of How Developers Seek, Relate, and Collect Relevant Information during Soft-
ware Maintenance Tasks. IEEE Transactions on Software Engineering, 32(12):971–987,
2006.

Bibliography 189

[198] Andrew J. Ko, Robert DeLine, and Gina Venolia. Information Needs in Collocated Soft-
ware Development Teams. In John Knight, Wolfgang Emmerich, and Gregg Rothermel,
editors, 29th International Conference on Software Engineering (ICSE 2007), pages 344–
353, Minneapolis, MN, USA, 2007. IEEE Computer Society.

[199] Ralf Th. Krampe and Neil Charness. Chapter 40: Aging and Expertise. In K. Anders Eric-
sson, Neil Charness, Paul J. Feltovich, and Robert R. Hoffman, editors, The Cambridge
Handbook of Expertise and Expert Performance, pages 723–742. Cambridge University
Press, New York, NY, USA, 2006.

[200] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. Technical debt: From metaphor
to theory and practice. IEEE Software, 6:18–21, 2012.

[201] Justin Kruger and David Dunning. Unskilled and unaware of it: How difficulties in
recognizing one’s own incompetence lead to inflated self-assessments. Journal of Per-
sonality and Social Psychology, 77(6):1121, 1999.

[202] Thomas Lancaster and Fintan Culwin. A comparison of source code plagiarism detec-
tion engines. Computer Science Education, 14(2):101–112, 2004.

[203] Ann Langley. Strategies for theorizing from process data. Academy of management
review, 24(4):691–710, 1999.

[204] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models:
A study of developer work habits. In Leon J. Osterweil, H. Dieter Rombach, and
Mary Lou Soffa, editors, 28th International Conference on Software Engineering (ICSE
2006), pages 492–501, Shanghai, China, 2006. ACM.

[205] Joseph Lawrance, Christopher Bogart, Margaret M. Burnett, Rachel K. E. Bellamy, Kyle
Rector, and Scott D. Fleming. How Programmers Debug, Revisited: An Information
Foraging Theory Perspective. IEEE Transactions on Software Engineering, 39(2):197–
215, 2013.

[206] Seonah Lee, Gail C. Murphy, Thomas Fritz, and Meghan Allen. How can diagram-
ming tools help support programming activities? In Mark Minas, Paolo Bottoni, and
Mary Beth Rosson, editors, IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC 2008), pages 246–249, Herrsching am Ammersee, Germany, 2008.
IEEE Computer Society.

[207] Meir M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE, 68(9):1060–1076, 1980.

[208] Timothy Lethbridge, Janice Singer, and Andrew Forward. How Software Engineers Use
Documentation: The State of the Practice. IEEE Software, 20(6):35–39, 2003.

[209] Paul Luo Li, Andrew J. Ko, and Jiamin Zhu. What Makes A Great Software Engineer?
In Antonia Bertolino, Gerardo Canfora, and Sebastian Elbaum, editors, 37th Interna-
tional Conference on Software Engineering (ICSE 2015), pages 700–710, Florence, Italy,
2015. IEEE.

190 Bibliography

[210] Chunyuan Liao, François Guimbretière, and Corinna E. Loeckenhoff. Pen-top Feed-
back for Paper-based Interfaces. In Pierre Wellner and Ken Hinckley, editors, 19th An-
nual ACM Symposium on User Interface Software and Technology (UIST 2006), pages
15–18, Montreux, Switzerland, 2006. ACM.

[211] Chunyuan Liao, François Guimbretière, Ken Hinckley, and Jim Hollan. Papier-
craft: A gesture-based command system for interactive paper. ACM Transactions on
Computer-Human Interaction (TOCHI), 14(4), 2008.

[212] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. Why De-
velopers are Slacking Off: Understanding How Software Teams Use Slack. In Darren
Gergle and Meredith Ringel Morris, editors, 19th ACM Conference on Computer Sup-
ported Cooperative Work and Social Computing (CSCW 2016): Companion, pages 333–
336, New York, NY, USA, 2016. ACM.

[213] Edwin A. Locke, Gary P. Latham, Ken J. Smith, and Robert E. Wood. A Theory of Goal
Setting & Task Performance. Prentice Hall, Upper Saddle River, NJ, USA, 1st edition,
1990.

[214] Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny, Hitesh
Sajnani, and Jan Vitek. DéJàVu: A Map of Code Duplicates on GitHub. Proc. ACM
Program. Lang., 1(OOPSLA):84:1–84:28, 2017.

[215] Wolfgang Lutz, Warren Sanderson, and Sergei Scherbov. The coming acceleration of
global population ageing. Nature, 451(7179):716–719, 2008. ISSN 1476-4687.

[216] David Ma, David Schuler, Thomas Zimmermann, and Jonathan Sillito. Expert Rec-
ommendation with Usage Expertise. In Eleni Stroulia, Kostas Kontogiannis, and Tao
Xie, editors, 25th IEEE International Conference on Software Maintenance (ICSM 2009),
pages 535–538, Edmonton, AB, Canada, 2009. IEEE Computer Society.

[217] Nicolas Mangano, Alex Baker, Mitch Dempsey, Emily Oh Navarro, and André van der
Hoek. Software design sketching with Calico. In Charles Pecheur, Jamie Andrews, and
Elisabetta Di Nitto, editors, 25th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2010), pages 23–32, Antwerp, Belgium, 2010. ACM.

[218] Nicolas Mangano, Thomas D. LaToza, Marian Petre, and André van der Hoek. Support-
ing informal design with interactive whiteboards. In Matt Jones, Philippe A. Palanque,
Albrecht Schmidt, and Tovi Grossman, editors, 2014 Conference on Human Factors in
Computing Systems (CHI 2014), pages 331–340, Toronto, ON, Canada, 2014. ACM.

[219] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to
Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.

[220] Annette Markham, Elizabeth Buchanan, AoIR Ethics Working Committee, et al. Eth-
ical decision-making and Internet research: Version 2.0. Association of Internet Re-
searchers, 2012.

[221] M. Lynne Markus and Daniel Robey. Information technology and organizational
change: Causal structure in theory and research. Management science, 34(5):583–598,
1988.

Bibliography 191

[222] Vitor T. Martins, Daniela Fonte, Pedro Rangel Henriques, and Daniela da Cruz. Pla-
giarism Detection: A Tool Survey and Comparison. In Maria João Varanda Pereira,
José Paulo Leal, and Alberto Simoes, editors, 3rd Symposium on Languages, Ap-
plications and Technologies (SLATE 2014), volume 38 of OpenAccess Series in Infor-
matics (OASIcs), pages 143–158, Bragança, Portugal, 2014. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[223] Brian W. Matthews. Comparison of the predicted and observed secondary structure
of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) – Protein Structure, 405(2):
442–451, 1975.

[224] Antoinette McCallin. Grappling with the literature in a grounded theory study. Con-
temporary Nurse, 15(1-2):61–69, 2003.

[225] David C. McClelland. Human motivation. Cambridge University Press, New York, NY,
USA, 1987.

[226] Robert R. McCrae and Oliver P. John. An Introduction to the Five-Factor Model and Its
Applications. Journal of Personality, 60(2):175–215, 1992.

[227] David W. McDonald and Mark S. Ackerman. Expertise recommender: A flexible rec-
ommendation system and architecture. In Wendy A. Kellogg and Steve Whittaker,
editors, Proceeding on the 2000 ACM Conference on Computer Supported Cooperative
Work (CSCW 2000), pages 231–240, Philadelphia, PA, USA, 2000. ACM.

[228] Gayle Laakmann McDowell. Cracking the Coding Interview. CareerCup, Palo Alto, CA,
USA, 5th edition, 2014.

[229] Rômulo Meloca, Gustavo Pinto, Leonardo Baiser, Marco Mattos, Ivanilton Polato,
Igor Scaliante Wiese, and Daniel German. Understanding the Usage, Impact, and
Adoption of Non-OSI Approved Licenses. In Andy Zaidman, Emily Hill, and Yasutaka
Kamei, editors, 15th International Conference on Mining Software Repositories (MSR
2018), pages 1–11, Gothenburg, Sweden, 2018. ACM.

[230] Tom Mens and Serge Demeyer, editors. Software Evolution. Springer, Berlin, Germany,
2008.

[231] Sharan B. Merriam, Rosemary S. Caffarella, and Lisa M. Baumgartner. Learning in
Adulthood: A Comprehensive Guide. John Wiley & Sons, San Francisco, CA, USA, 3rd
edition, 2007.

[232] Merriam-Webster.com. ethics. http://www.merriam-webster.com/
dictionary/ethics, 2016.

[233] Merriam-Webster.com. expert. http://www.merriam-webster.com/
dictionary/expert, 2016.

[234] Merriam-Webster.com. habit. https://www.merriam-webster.com/
dictionary/habit, 2018.

http://www.merriam-webster.com/dictionary/ethics
http://www.merriam-webster.com/dictionary/ethics
http://www.merriam-webster.com/dictionary/expert
http://www.merriam-webster.com/dictionary/expert
https://www.merriam-webster.com/dictionary/habit
https://www.merriam-webster.com/dictionary/habit

192 Bibliography

[235] Andre N. Meyer, Laura E. Barton, Gail C. Murphy, Thomas Zimmermann, and Thomas
Fritz. The Work Life of Developers: Activities, Switches and Perceived Productivity.
IEEE Transactions on Software Engineering, 43(12):1178–1193, 2017.

[236] Andre N. Meyer, Gail C. Murphy, Thomas Zimmermann, and Thomas Fritz. Design
Recommendations for Self-Monitoring in the Workplace: Studies in Software Develop-
ment. Proceedings of the ACM on Human-Computer Interaction, 1(CSCW):1–24, 2017.

[237] Harald A. Mieg. Chapter 41: Social and Sociological Factors in the Development of
Expertise. In K. Anders Ericsson, Neil Charness, Paul J. Feltovich, and Robert R. Hoff-
man, editors, The Cambridge Handbook of Expertise and Expert Performance, pages
743–760. Cambridge University Press, New York, NY, USA, 2006.

[238] Naomi Miyake. Constructive interaction and the iterative process of understanding.
Cognitive science, 10(2):151–177, 1986.

[239] Audris Mockus and James D. Herbsleb. Expertise browser: A quantitative approach to
identifying expertise. In Will Tracz, Michal Young, and Jeff Magee, editors, 24th Inter-
national Conference on Software Engineering (ICSE 2002), pages 503–512, Orlando, FL,
USA, 2002. ACM.

[240] John Mongan, Eric Gigure, and Noah Kindler. Programming interviews exposed. John
Wiley & Sons, Birmingham, England, UK, 3rd edition, 2013.

[241] Guy Moors. Exploring the effect of a middle response category on response style in
attitude measurement. Quality & quantity, 42(6):779–794, 2008. ISSN 0033-5177.

[242] Patrick Morrison and Emerson Murphy-Hill. Is programming knowledge related to
age? An exploration of Stack Overflow. In Thomas Zimmermann, Massimiliano Di
Penta, and Sunghun Kim, editors, 10th International Working Conference on Mining
Software Repositories (MSR 2013), pages 69–72, San Francisco, CA, USA, 2013. IEEE.

[243] Janice M. Morse. Chapter 11: Sampling in grounded theory. In Antony Bryant and
Kathy Charmaz, editors, The SAGE Handbook of Grounded Theory, pages 229–244.
SAGE Publications, Thousand Oaks, CA, USA, 2007.

[244] Stephan J. Motowidlo, Walter C. Borman, and Mark J. Schmit. A Theory of Individual
Differences in Task and Contextual Performance. Human Performance, 10(2):71–83,
1997.

[245] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curating
GitHub for engineered software projects. Empirical Software Engineering, 22(6):3219–
3253, 2017.

[246] Brad A. Myers, Sun Young Park, Yoko Nakano, Greg Mueller, and Andrew J. Ko. How de-
signers design and program interactive behaviors. In Mark Minas, Paolo Bottoni, and
Mary Beth Rosson, editors, IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC 2008), pages 177–184, Herrsching am Ammersee, Germany, 2008.
IEEE Computer Society.

Bibliography 193

[247] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. What makes a
good code example? A study of programming Q&A in StackOverflow. In Paolo Tonella,
Massimiliano Di Penta, and Jonathan I. Maletic, editors, 28th IEEE International Con-
ference on Software Maintenance (ICSM 2012), pages 25–34, Trento, Italy, 2012. IEEE
Computer Society.

[248] Anton J. Nederhof. Methods of coping with social desirability bias: A review. European
Journal of Social Psychology, 15(3):263–280, 1985.

[249] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler: Detecting perfor-
mance problems via similar memory-access patterns. In David Notkin, Betty H. C.
Cheng, and Klaus Pohl, editors, 35th International Conference on Software Engineer-
ing (ICSE 2013), pages 562–571, San Francisco, CA, USA, 2013. IEEE Computer Society.

[250] Moira C. Norrie and Beat Signer. Switching over to paper: A new web channel. In
Tiziana Catarci, Massimo Mecella, Mylopoulos, John, and Maria E. Orlowska, editors,
4th International Conference on Web Information Systems Engineering (WISE 2003),
pages 209–218, Rome, Italy, 2003. IEEE Computer Society.

[251] Office of the Secretary, United States Department of Health, Education, and Welfare.
Protection of Human Subjects: Notice of Report for Public Comment. Federal Register,
IV:23192–23197, 1979.

[252] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. Crowd
documentation: Exploring the coverage and the dynamics of API discussions on Stack
Overflow. Georgia Institute of Technology, Technical Report, 2012.

[253] Adolfo Pena. The Dreyfus model of clinical problem-solving skills acquisition: A criti-
cal perspective. Medical Education Online, 15:1–11, 2010.

[254] Marian Petre. Team coordination through externalized mental imagery. International
Journal of Human-Computer Studies, 61(2):205–218, 2004.

[255] Marian Petre. UML in practice. In David Notkin, Betty H. C. Cheng, and Klaus Pohl,
editors, 35th International Conference on Software Engineering (ICSE 2013), pages 722–
731, San Francisco, CA, USA, 2013. IEEE Computer Society.

[256] PMD. Finding duplicated code. http://pmd.github.io/pmd-5.5.1/usage/
cpd-usage.html, 2016.

[257] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. Seahawk: Stack Overflow in the
IDE. In David Notkin, Betty H. C. Cheng, and Klaus Pohl, editors, 35th International
Conference on Software Engineering (ICSE 2013), pages 1295–1298, San Francisco, CA,
USA, 2013. IEEE Computer Society.

[258] Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, and Michele Lanza. Understanding
and classifying the quality of technical forum questions. In W. Eric Wong and Bruce
McMillin, editors, 14th International Conference on Quality Software (QSIC 2014),
pages 343–352, Allen, TX, USA, 2014. IEEE.

http://pmd.github.io/pmd-5.5.1/usage/cpd-usage.html
http://pmd.github.io/pmd-5.5.1/usage/cpd-usage.html

194 Bibliography

[259] Hannah Poteat. GitHub’s 2015 Transparency Report. https://github.com/
blog/2202-github-s-2015-transparency-report, 2016.

[260] David Martin Powers. Evaluation: From precision, recall and F-measure to ROC, in-
formedness, markedness and correlation. Journal of Machine Learning Technologies,
2(1):37–63, 2011.

[261] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. Finding plagiarisms among a
set of programs with JPlag. Journal of Universal Computer Science, 8(11):1016–1038,
2002.

[262] Teade Punter, Marcus Ciolkowski, Bernd Freimut, and Isabel John. Conducting on-line
surveys in software engineering. In Anneliese K. Amschler Andrews, Lionel C. Briand,
and Giovanni Cantone, editors, 2003 International Symposium on Empirical Software
Engineering (ISESE 2003), pages 80–88, Rome, Italy, 2003. IEEE Computer Society.

[263] Pasi Pyoria. The concept of knowledge work revisited. Journal of Knowledge Manage-
ment, 9(3):116–127, 2005.

[264] C. Ragkhitwetsagul. Measuring Code Similarity in Large-Scaled Code Corpora. In
Nicholas A. Kraft, Tim Menzies, Bram Adams, and Denys Poshyvanyk, editors, 2016
IEEE International Conference on Software Maintenance and Evolution (ICSME 2016),
pages 626–630, Raleigh, NC, USA, 2016. IEEE Computer Society.

[265] Paul Ralph. Toward Methodological Guidelines for Process Theories and Taxonomies
in Software Engineering. IEEE Transactions on Software Engineering, Early Access:1–
30, 2018.

[266] Karen Raphael. Recall bias: A proposal for assessment and control. International
journal of epidemiology, 16(2):167–170, 1987.

[267] Romain Robbes and David Rothlisberger. Using Developer Interaction Data to
Compare Expertise Metrics. In Thomas Zimmermann, Massimiliano Di Penta, and
Sunghun Kim, editors, 10th International Working Conference on Mining Software
Repositories (MSR 2013), pages 297–300, San Francisco, CA, USA, 2013. IEEE.

[268] Naomi B. Robbins and Richard M. Heiberger. Plotting Likert and other rating scales.
In David Judkins, editor, 2011 Joint Statistical Meeting (JSM 2011), pages 1058–1066,
Miami Beach, FL, USA, 2011. American Statistical Association.

[269] S. Ian Robertson. Problem Solving: Perspectives from Cognition and Neuroscience.
Routledge, London, UK, 2nd edition, 2016.

[270] Pierre N. Robillard. The Role of Knowledge in Software Development. Communica-
tions of the ACM, 42(1):87–92, 1999.

[271] D. Rodríguez, M. A. Sicilia, E. García, and R. Harrison. Empirical findings on team
size and productivity in software development. Journal of Systems and Software, 85(3):
562–570, 2012.

https://github.com/blog/2202-github-s-2015-transparency-report
https://github.com/blog/2202-github-s-2015-transparency-report

Bibliography 195

[272] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. How do profes-
sional developers comprehend software? In Martin Glinz, Gail C. Murphy, and Mauro
Pezzè, editors, 34th International Conference on Software Engineering (ICSE 2012),
pages 255–265, Zurich, Switzerland, 2012. IEEE Computer Society.

[273] Mike Rohde. The sketchnote handbook: The Illustrated Guide to Visual Note Taking.
Peachpit Press, Berkeley, CA, USA, 2013.

[274] Jarrett Rosenberg. Chapter 6: Statistical Methods and Measurement. In Forrest Shull,
Janice Singer, and Dag I.K. Sjoberg, editors, Guide to Advanced Empirical Software En-
gineering, pages 285–311. Springer, London, UK, 2008.

[275] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach. Science of Com-
puter Programming, 74(7):470–495, 2009.

[276] Richard M. Ryan and Edward L. Deci. Self-determination theory and the facilitation of
intrinsic motivation, social development, and well-being. American Psychologist, 55
(1):68–78, 2000.

[277] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V. Lopes.
SourcererCC: Scaling code clone detection to big-code. In Laura Dillon, Willem Visser,
and Laurie Williams, editors, 38th International Conference on Software Engineering
(ICSE 2016), pages 1157–1168, Austin, TX, USA, 2016. ACM.

[278] Johnny Saldana. The coding manual for qualitative researchers. Sage, Thousand Oaks,
CA, USA, 2015.

[279] Norsaremah Salleh, Emilia Mendes, John Grundy, and Giles St J. Burch. An empirical
study of the effects of personality in pair programming using the five-factor model. In
Laurie Williams, James Miller, and Rick Selby, editors, 3rd International Symposium on
Empirical Software Engineering and Measurement (ESEM 2009), pages 214–225, Lake
Buena Vista, FL, USA, 2009. ACM / IEEE Computer Society.

[280] Linda J. Sax, Shannon K. Gilmartin, and Alyssa N. Bryant. Assessing response rates
and nonresponse bias in web and paper surveys. Research in higher education, 44(4):
409–432, 2003.

[281] Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Mario Linares-Vásquez,
Denys Poshyvany, and Rocco Oliveto. Automatically Assessing Code Understandabil-
ity: How Far Are We? In Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen,
editors, 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE 2017), pages 417–427, Urbana, IL, USA, 2017. IEEE Computer Society.

[282] Dennis Schenk and Mircea Lungu. Geo-locating the knowledge transfer in StackOver-
flow. In Raian Ali, Andrew Begel, and Walid Maalej, editors, 2013 International Work-
shop on Social Software Engineering (SSE 2013), pages 21–24, Saint Petersburg, Russian
Federation, 2013. ACM.

196 Bibliography

[283] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: Local algorithms for
document fingerprinting. In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors,
2003 ACM SIGMOD International Conference on Management of Data (SIGMOD 2003),
pages 76–85, San Diego, CA, USA, 2003. ACM.

[284] Felix D. Schonbrodt and Friederike X. R. Gerstenberg. An IRT analysis of motive ques-
tionnaires: The unified motive scales. Journal of Research in Personality, 46(6):725–
742, 2012.

[285] Martina Schuetze, Pierre Sachse, and Anne Roemer. Support value of sketching in the
design process. Research in Engineering Design, 2(14):89–97, 2003.

[286] Norbert Schwarz and Daphna Oyserman. Asking questions about behavior: Cogni-
tion, communication, and questionnaire construction. American Journal of Evalua-
tion, 22(2):127–160, 2001.

[287] Carolyn B. Seaman. Qualitative Methods in Empirical Studies of Software Engineering.
IEEE Transactions on Software Engineering, 25(4):557–572, 1999.

[288] Ann Searle. Introducing research and data in psychology: A guide to methods and anal-
ysis. Routledge, 2000.

[289] William R. Shadish, Thomas D. Cook, and Donald T. Campbell. Experimental and
Quasi-Experimental Designs for Generalized Causal Inference. Houghton Mifflin,
Boston, MA, USA, 2002.

[290] Katie Shilton and Sheridan Sayles. “We Aren’t All Going to Be on the Same Page about
Ethics”: Ethical Practices and Challenges in Research on Digital and Social Media. In
Tung X. Bui and Ralph H. Sprague Jr., editors, 49th Hawaii International Conference on
System Sciences (HICSS 2016), pages 1909–1918, Koloa, HI, USA, 2016. IEEE Computer
Society.

[291] Ben Shneiderman and Richard Mayer. Syntactic/Semantic Interactions in Program-
mer Behavior: A Model and Experimental Results. International Journal of Computer
and Information Sciences, 8(3):219–238, 1979.

[292] Janet Siegmund, Christian Kaestner, Joerg Liebig, Sven Apel, and Stefan Hanenberg.
Measuring and modeling programming experience. Empirical Software Engineering,
19(5):1299–1334, 2014.

[293] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Asking and Answering Questions
during a Programming Change Task. IEEE Transactions on Software Engineering, 34
(4):434–451, 2008.

[294] Giuseppe Silvestri, Jie Yang, Alessandro Bozzon, and Andrea Tagarelli. Linking Ac-
counts across Social Networks: The Case of StackOverflow, GitHub and Twitter. In
Giuliano Armano, Alessandro Bozzon, and Alessandro Giuliani, editors, 1st Interna-
tional Workshop on Knowledge Discovery on the WEB (KDWeb 2015), CEUR Workshop
Proceedings, pages 41–52, Cagliari, Italy, 2015. CEUR-WS.org.

Bibliography 197

[295] Janice Singer, Timothy C. Lethbridge, Norman G. Vinson, and Nicolas Anquetil. An
examination of software engineering work practices. In J. Howard Johnson, editor,
1997 Conference of the Centre for Advanced Studies on Collaborative Research (CASCON
1997), page 21, Toronto, ON, Canada, 1997. IBM.

[296] Dag I. K. Sjoberg, Tore Dyba, Bente C. D. Anda, and Jo E. Hannay. Building theories
in software engineering. In Forrest Shull, Janice Singer, and Dag I.K. Sjoberg, editors,
Guide to Advanced Empirical Software Engineering, pages 312–336. Springer, London,
UK, 2008.

[297] Software Freedom Law Center. Free Software Foundation, Inc v. Cisco Systems, Inc.
United States District Court for the Southern District of New York, 2008.

[298] Manuel Sojer and Joachim Henkel. License Risks from Ad Hoc Reuse of Code from the
Internet. Communications of the ACM, 54(12):74–81, 2011.

[299] Sabine Sonnentag. Excellent software professionals: Experience, work activities, and
perception by peers. Behaviour & Information Technology, 14(5):289–299, 1995.

[300] Sabine Sonnentag. Expertise in professional software design: A process study. Journal
of Applied Psychology, 83(5):703–715, 1998.

[301] Sabine Sonnentag, Cornelia Niessen, and Judith Volmer. Chapter 21: Expertise in Soft-
ware Design. In K. Anders Ericsson, Neil Charness, Paul J. Feltovich, and Robert R.
Hoffman, editors, The Cambridge Handbook of Expertise and Expert Performance,
pages 373–387. Cambridge University Press, New York, NY, USA, 2006.

[302] Lauren A. Sosniak. Chapter 16: Retrospective Interviews in the Study of Expertise
and Expert Performance. In K. Anders Ericsson, Neil Charness, Paul J. Feltovich, and
Robert R. Hoffman, editors, The Cambridge Handbook of Expertise and Expert Perfor-
mance, pages 287–301. Cambridge University Press, New York, NY, USA, 2006.

[303] Charles Spearman. The proof and measurement of association between two things.
American Journal of Psychology, 15(1):72–101, 1904.

[304] Andrew M. St. Laurent. Understanding Open Source and Free Software Licensing.
O’Reilly Media, 2004.

[305] Stack Exchange Community Wiki. Database schema documentation for the public
data dump and SEDE. https://meta.stackexchange.com/a/2678, 2018-
02-27.

[306] Stack Exchange Inc. Stack Exchange Data Dump: August 18, 2015. https://
archive.org/details/stackexchange/, 2015.

[307] Stack Exchange Inc. 2015 Developer Survey. http://stackoverflow.com/
research/developer-survey-2015, 2016.

[308] Stack Exchange Inc. Stack Exchange API v2.2. https://api.stackexchange.
com/docs, 2016.

https://meta.stackexchange.com/a/2678
https://archive.org/details/stackexchange/
https://archive.org/details/stackexchange/
http://stackoverflow.com/research/developer-survey-2015
http://stackoverflow.com/research/developer-survey-2015
https://api.stackexchange.com/docs
https://api.stackexchange.com/docs

198 Bibliography

[309] Stack Exchange Inc. Stack Exchange Data Dump: March 14, 2017. https://
archive.org/details/stackexchange/, 2017.

[310] Stack Exchange Inc. Stack Exchange Data Dump 2017-12-01. https://archive.
org/details/stackexchange/, 2017.

[311] Stack Exchange Inc. Markdown help. https://stackoverflow.com/
editing-help, 2018.

[312] Stack Exchange Inc. Stack Exchange Network Terms of Service. https:
//web.archive.org/web/20180228075555/http://stackexchange.
com/legal, 2018.

[313] Stack Exchange Inc. Stack Exchange Network Terms of Service. http://
stackexchange.com/legal, 2018.

[314] Stack Exchange Inc. Stack Overflow Developer Survey Results 2018. https://
insights.stackoverflow.com/survey/2018, 2018.

[315] Stack Exchange Inc. Stack Exchange Data Dump 2018-09-05. https://archive.
org/details/stackexchange/, 2018.

[316] Stack Exchange Meta. What is up with the source code license on Stack Overflow?
http://meta.stackexchange.com/q/25956, 2009.

[317] Stack Exchange Meta. Do I have to worry about copyright issues for code posted on
Stack Overflow? http://meta.stackexchange.com/q/12527, 2013.

[318] Stack Exchange Meta. Can we get some explicit clarification on the *intended* legal us-
age of code from SO answers? http://meta.stackoverflow.com/q/286582,
2015.

[319] Stack Exchange Meta. A New Code License: The MIT, this time with Attribution Re-
quired. http://meta.stackexchange.com/q/272956, 2016.

[320] Stack Overflow Meta. How to handle code clones on Stack Overflow? https://
meta.stackoverflow.com/q/375761, 2018.

[321] Harald Stoerrle. Describing Process Patterns with UML. In Gerhard Goos, Juris Hart-
manis, Jan van Leeuwen, and Ambriola Vincenzo, editors, 8th European Workshop on
Software Process Technology (EWSPT 2001), pages 173–181, Witten, Germany, 2001.
Springer.

[322] Margaret-Anne Storey, Leif Singer, Fernando Figueira Filho, Alexey Zagalsky, and
Daniel M. German. How Social and Communication Channels Shape and Challenge a
Participatory Culture in Software Development. IEEE Transactions on Software Engi-
neering, 43(2):185–204, 2017.

[323] Natalie Stors and Sebastian Baltes. Constructing Urban Tourism Space Digitally: A
Study of Airbnb Listings in Two Berlin Neighborhoods. Proceedings of the ACM on
Human-Computer Interaction, 2(CSCW):1–29, 2018.

https://archive.org/details/stackexchange/
https://archive.org/details/stackexchange/
https://archive.org/details/stackexchange/
https://archive.org/details/stackexchange/
https://stackoverflow.com/editing-help
https://stackoverflow.com/editing-help
https://web.archive.org/web/20180228075555/http://stackexchange.com/legal
https://web.archive.org/web/20180228075555/http://stackexchange.com/legal
https://web.archive.org/web/20180228075555/http://stackexchange.com/legal
http://stackexchange.com/legal
http://stackexchange.com/legal
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://archive.org/details/stackexchange/
https://archive.org/details/stackexchange/
http://meta.stackexchange.com/q/25956
http://meta.stackexchange.com/q/12527
http://meta.stackoverflow.com/q/286582
http://meta.stackexchange.com/q/272956
https://meta.stackoverflow.com/q/375761
https://meta.stackoverflow.com/q/375761

Bibliography 199

[324] Siddharth Subramanian and Reid Holmes. Making sense of online code snippets. In
Thomas Zimmermann, Massimiliano Di Penta, and Sunghun Kim, editors, 10th In-
ternational Working Conference on Mining Software Repositories (MSR 2013), pages
85–88, San Francisco, CA, USA, 2013. IEEE.

[325] Masaki Suwa, John Gero, and Terry Purcell. Unexpected discoveries and S-invention
of design requirements: Important vehicles for a design process. Design Studies, 21(6):
539–567, 2000.

[326] Abbas Tashakkori and Charles Teddlie. Mixed methodology: Combining qualitative
and quantitative approaches. Sage, Thousand Oaks, CA, USA, 1998.

[327] Richard N. Taylor and Andre van der Hoek. Software design and architecture: The
once and future focus of software engineering. In Lionel Briand and Alexander L. Wolf,
editors, Workshop on the Future of Software Engineering (FOSE 2007), pages 226–243,
Minneapolis, MN, USA, 2007. IEEE Computer Society.

[328] Robert Thornberg. Informed grounded theory. Scandinavian Journal of Educational
Research, 56(3):243–259, 2012.

[329] Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimiliano Di Penta.
An empirical study on the maintenance of source code clones. Empirical Software
Engineering, 15(1):1–34, 2010.

[330] Tim Post. A new (2018) update to our Terms of Service is here. https:
//meta.stackexchange.com/questions/309746/a-new-2018-
update-to-our-terms-of-service-is-here, 2018.

[331] TIOBE software BV. TIOBE Index: March 2016. http://www.tiobe.com/tiobe_
index, 2016.

[332] TIOBE software BV. TIOBE Index for February 2017. http://www.tiobe.com/
tiobe-index/, 2017.

[333] Dennis Tourish and Owen Hargie. Motivating critical upward communication: A key
challenge for management decision making. In Dennis Tourish and Owen Hargie, edi-
tors, Key Issues in Organizational Communication, pages 188–204. Routledge, London,
UK, 2003.

[334] David Travis. Usability Test Reporting. https://www.userfocus.co.uk/
articles/cif.html, 2003.

[335] Christoph Treude and Martin P. Robillard. Augmenting API Documentation with In-
sights from Stack Overflow. In Laura Dillon, Willem Visser, and Laurie Williams, ed-
itors, 38th International Conference on Software Engineering (ICSE 2016), pages 392–
403, Austin, TX, USA, 2016. ACM.

[336] Christoph Treude and Martin P. Robillard. Understanding Stack Overflow Code Frag-
ments. In Hong Mei, Lu Zhang, and Thomas Zimmermann, editors, 2017 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME 2017), pages
509–513, Shanghai, China, 2017. IEEE Computer Society.

https://meta.stackexchange.com/questions/309746/a-new-2018-update-to-our-terms-of-service-is-here
https://meta.stackexchange.com/questions/309746/a-new-2018-update-to-our-terms-of-service-is-here
https://meta.stackexchange.com/questions/309746/a-new-2018-update-to-our-terms-of-service-is-here
http://www.tiobe.com/tiobe_index
http://www.tiobe.com/tiobe_index
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
https://www.userfocus.co.uk/articles/cif.html
https://www.userfocus.co.uk/articles/cif.html

200 Bibliography

[337] Christoph Treude, Ohad Barzilay, and Margaret-Anne D. Storey. How do programmers
ask and answer questions on the web? In Richard N. Taylor, Harald C. Gall, and Ne-
nad Medvidovic, editors, 33rd International Conference on Software Engineering (ICSE
2011), pages 804–807, Waikiki, Honolulu, 2011. ACM.

[338] Christoph Treude, Fernando Figueira Filho, and Uirá Kulesza. Summarizing and mea-
suring development activity. In Elisabetta Di Nitto, Mark Harman, and Patrick Hey-
mans, editors, 10th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundations of Software Engineering
(ESEC/FSE 2015), pages 625–636, Bergamo, Italy, 2015. ACM.

[339] Barbara Tversky. Spatial schemas in depictions. In Merideth Gattis, editor, Spatial
Schemas and Abstract Thought, pages 79–111. The MIT Press, Cambridge, MA, USA,
2001.

[340] Barbara Tversky. What do sketches say about thinking? In Thomas Stahovich, Randall
Davis, and James A. Landay, editors, AAAI Spring Symposium, pages 148–151, Palo Alto,
CA, USA, 2002. AAAI Press.

[341] Barbara Tversky, Masaki Suwa, Maneesh Agrawala, Julie Heiser, Chris Stolte, Pat Han-
rahan, Doantam Phan, Jeff Klingner, Marie-Paule Daniel, Paul Lee, et al. Sketches for
design and design of sketches. In Udo Lindemann, editor, Human Behaviour in De-
sign, pages 79–86. Springer, Berlin, Germany, 2003.

[342] David G. Ullman, Stephen Wood, and David Craig. The importance of drawing in the
mechanical design process. Computers & Graphics, 14(2):263–274, 1990.

[343] Andrew H. van de Ven. Nothing is quite so practical as a good theory. Academy of
management review, 14(4):486–489, 1989.

[344] Andrew H. van de Ven and Marshall Scott Poole. Explaining development and change
in organizations. Academy of management review, 20(3):510–540, 1995.

[345] Andre van der Hoek and Marian Petre, editors. Software Designers in Action: A Human-
Centric Look at Design Work. CRC Press, 2014.

[346] Bogdan Vasilescu, Andrea Capiluppi, and Alexander Serebrenik. Gender, Representa-
tion and Online Participation: A Quantitative Study of StackOverflow. In Karl Aberer,
Andreas Flache, Wander Jager, Ling Liu, Jie Tang, and Christophe Gueret, editors, 4th
International Conference on Social Informatics (SocInfo 2012), Lecture Notes in Com-
puter Science, pages 332–338, Lausanne, Switzerland, 2012. Springer.

[347] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. StackOverflow and
GitHub: Associations between Software Development and Crowdsourced Knowledge.
In L. W. Chang, Jaideep Srivastava, and Justin Zhan, editors, 2013 International Con-
ference on Social Computing (SocialCom 2013), pages 188–195, Washington, DC, USA,
2013. IEEE Computer Society.

[348] Christopher Vendome. A large scale study of license usage on GitHub. In Antonia
Bertolino, Gerardo Canfora, and Sebastian Elbaum, editors, 37th International Confer-
ence on Software Engineering (ICSE 2015), pages 772–774, Florence, Italy, 2015. IEEE.

Bibliography 201

[349] Norman G. Vinson and Janice Singer. Chapter 9: A Practical Guide to Ethical Research
Involving Humans. In Forrest Shull, Janice Singer, and Dag I.K. Sjoberg, editors, Guide
to Advanced Empirical Software Engineering, pages 229–256. Springer, London, UK,
2008.

[350] Jessica Vitak, Katie Shilton, and Zahra Ashktorab. Beyond the Belmont Principles:
Ethical challenges, practices, and beliefs in the online data research community. In
Darren Gergle, Meredith Ringel Morris, Pernille Bjørn, and Joseph A. Konstan, editors,
19th ACM Conference on Computer-Supported Cooperative Work & Social Computing
(CSCW 2016), pages 941–953, San Francisco, CA, USA, 2016. ACM.

[351] Adriana Santarosa Vivacqua and Henry Lieberman. Agents to assist in finding help. In
Thea Turner and Gerd Szwillus, editors, 2000 Conference on Human factors in comput-
ing systems (CHI 2000), pages 65–72, The Hague, The Netherlands, 2000. ACM.

[352] Annika Waern. The Ethics of Unaware Participation in Public Interventions. In Jofish
Kaye, Allison Druin, Cliff Lampe, Dan Morris, and Juan Pablo Hourcade, editors, 2016
Conference on Human Factors in Computing Systems (CHI 2016), pages 803–814, San
Jose, CA, USA, 2016. ACM.

[353] Jagoda Walny, M. Sheelagh T. Carpendale, Nathalie Henry Riche, Gina Venolia, and
Philip Fawcett. Visual Thinking In Action: Visualizations As Used On Whiteboards.
IEEE Transactions on Visualization and Computer Graphics, 17(12):2508–2517, 2011.

[354] Jagoda Walny, Jonathan Haber, M. Dork, Jonathan Sillito, and Sheelagh Carpendale.
Follow that sketch: Lifecycles of diagrams and sketches in software development. In
Stephan Diehl, Claus Lewerentz, and Houari Sahraoui, editors, 6th IEEE International
Workshop on Visualizing Software for Understanding and Analysis (VISSOFT 2011),
pages 1–8, Williamsburg, VA, USA, 2011. IEEE Computer Society.

[355] Shaowei Wang, Lo David, and Lingxiao Jiang. An empirical study on developer inter-
actions in StackOverflow. In Sung Y. Shin and José Carlos Maldonado, editors, 28th
Annual ACM Symposium on Applied Computing (SAC 2013), pages 1019–1024, Coim-
bra, Portugal, 2013. ACM.

[356] Nadir Weibel, Adriana Ispas, Beat Signer, and Moira C. Norrie. Paperproof: A paper-
digital proof-editing system. In Mary Czerwinski, Arnold M. Lund, and Desney S. Tan,
editors, 2008 Conference on Human Factors in Computing Systems (CHI 2008), pages
2349–2354, Florence, Italy, 2008. ACM.

[357] Karl E. Weick. Theory Construction as Disciplined Imagination. Academy of manage-
ment review, 14(4):516–531, 1989.

[358] Robert W. Weisberg. Chapter 42: Modes of Expertise in Creative Thinking: Evi-
dence from Case Studies. In K. Anders Ericsson, Neil Charness, Paul J. Feltovich, and
Robert R. Hoffman, editors, The Cambridge Handbook of Expertise and Expert Perfor-
mance, pages 761–787. Cambridge University Press, New York, NY, USA, 2006.

202 Bibliography

[359] Lawrence G. Weiss, Donald H. Saklofske, Diane Coalson, and Susan Engi Raiford.
WAIS-IV clinical use and interpretation: Scientist-practitioner perspectives. Academic
Press, Cambridge, MA, USA, 2010.

[360] Peter Weissgerber and Stephan Diehl. Identifying Refactorings from Source-Code
Changes. In Shinichi Honiden, Sebastián Uchitel, and Steve Easterbrook, editors, 21st
IEEE/ACM International Conference on Automated Software Engineering (ASE 2006),
pages 231–240, Tokyo, Japan, 2006. IEEE Computer Society.

[361] Jeffrey S. White. Jacobsen v. Katzer, 535 F.3d 1373, 1379. United States Court of Appeals
for the Federal Circuit, 2008.

[362] Wikipedia. Free Software Foundation, Inc v. Cisco Systems, Inc. https:
//en.wikipedia.org/wiki/Free_Software_Foundation,_Inc._v.
_Cisco_Systems,_Inc., 2017.

[363] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1(6):80–83,
1945.

[364] Wesley Willett, Pascal Goffin, and Petra Isenberg. Understanding Digital Note-Taking
Practice for Visualization. IEEE Computer Graphics and Applications, 35(4):38–51,
2015.

[365] Laurie A. Williams, Robert R. Kessler, Ward Cunningham, and Ron Jeffries. Strength-
ening the Case for Pair Programming. IEEE Software, 17(4):19–25, 2000.

[366] David R. Wright. Research ethics and computer science: An unconsummated mar-
riage. In Shihong Huang, Rob Pierce, and John W. Stamey Jr., editors, 24th Interna-
tional Conference on Design of Communication (SIGDOC 2006), pages 196–201, Myrtle
Beach, SC, USA, 2006. ACM.

[367] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. How do developers
utilize source code from stack overflow? Empirical Software Engineering, 34(2):53,
2018.

[368] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and Zhen-
chang Xing. What do developers search for on the web? Empirical Software Engineer-
ing, 22(6):3149–3185, 2017.

[369] Di. Yang, Aftab Hussain, and Cristina Videira Lopes. From Query to Usable Code:
An Analysis of Stack Overflow Code Snippets. In Miryung Kim, Romain Robbes, and
Christian Bird, editors, 13th International Conference on Mining Software Repositories
(MSR 2016), pages 391–402, Austin, TX, USA, 2016. ACM.

[370] Di. Yang, Pedro Martins, Vaibhav Saini, and Cristina V. Lopes. Stack Overflow in
Github: Any Snippets There? In Jesus M. Gonzalez-Barahona, Abram Hindle, and
Lin Tan, editors, 14th International Conference on Mining Software Repositories (MSR
2017), pages 280–290, Buenos Aires, Argentina, 2017. IEEE Computer Society.

https://en.wikipedia.org/wiki/Free_Software_Foundation,_Inc._v._Cisco_Systems,_Inc.
https://en.wikipedia.org/wiki/Free_Software_Foundation,_Inc._v._Cisco_Systems,_Inc.
https://en.wikipedia.org/wiki/Free_Software_Foundation,_Inc._v._Cisco_Systems,_Inc.

Bibliography 203

[371] Jie Yang, Claudia Hauff, Alessandro Bozzon, and Geert-Jan Houben. Asking the right
question in collaborative Q&A systems. In Leo Ferres, Gustavo Rossi, Virgilio A. F.
Almeida, and Eelco Herder, editors, 25th ACM Conference on Hypertext and Social Me-
dia (HT 2014), pages 179–189, Santiago, Chile, 2014. ACM. ISBN 978-1-4503-2954-5.

[372] Koji Yatani, Eunyoung Chung, Carlos Jensen, and Khai N. Truong. Understanding how
and why open source contributors use diagrams in the development of Ubuntu. In
Dan R. Olsen Jr., Richard B. Arthur, Ken Hinckley, Meredith Ringel Morris, Scott E.
Hudson, and Saul Greenberg, editors, 2009 Conference on Human Factors in Comput-
ing Systems (CHI 2009), pages 995–1004, Boston, MA, USA, 2009. ACM.

[373] Alexey Zagalsky, Ohad Barzilay, and Amiram Yehudai. Example Overflow: Using so-
cial media for code recommendation. In Walid Maalej, Martin P. Robillard, Robert J.
Walker, and Thomas Zimmermann, editors, 3rd International Workshop on Rec-
ommendation Systems for Software Engineering (RSSE 2012), pages 38–42, Zurich,
Switzerland, 2012. IEEE.

[374] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and Miryung
Kim. Are Code Examples on an Online Q&A Forum Reliable? A Study of API Misuse on
Stack Overflow. In Ivica Crnkovic, Marsha Chechik, and Mark Harman, editors, 40th
International Conference on Software Engineering (ICSE 2018), pages 1–11, Gothen-
burg, Sweden, 2018. ACM.

[375] Minghui Zhou and Audris Mockus. Developer Fluency: Achieving True Mastery in
Software Projects. In Gruia-Catalin Roman and André van der Hoek, editors, 18th
ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE
2010), pages 137–146, Santa Fe, NM, USA, 2010. ACM.

[376] Franz Zieris and Lutz Prechelt. On knowledge transfer skill in pair programming. In
Maurizio Morisio, Tore Dyba, and Marco Torchiano, editors, 8th International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM 2014), pages 11:1–
11:10, Torino, Italy, 2014. ACM.

[377] Barry J. Zimmerman. Chapter 39: Development and Adaption of Expertise: The Role
of Self-Regulatory Processes and Beliefs. In K. Anders Ericsson, Neil Charness, Paul J.
Feltovich, and Robert R. Hoffman, editors, The Cambridge Handbook of Expertise and
Expert Performance, pages 705–722. Cambridge University Press, New York, NY, USA,
2006.

[378] Doug Zytko, Jessa Lingel, Jeremy Birnholtz, Nicole B. Ellison, and Jeff Hancock. Online
Dating as Pandora’s Box: Methodological Issues for the CSCW Community. In Dan
Cosley, Andrea Forte, Luigina Ciolfi, and David W. McDonald, editors, 18th ACM Con-
ference on Computer Supported Cooperative Work & Social Computing (CSCW 2015),
pages 131–134, Vancouver, BC, Canada, 2015. ACM.

	Overview
	Sketching: Developers' Usage of Sketches and Diagrams in Practice
	Introduction
	Research Design
	Phase 1: Exploratory Research
	Phase 2: Online Survey
	Phase 3: Observational Study

	Results: Online Survey
	Methods
	Survey Participants
	Findings
	Correlations

	Results: Observational Study
	Methods
	Study Participants
	Findings

	Limitations and Threats to Validity
	Related Work
	Discussion
	Conclusion: Empirical Results
	Tool Support
	Existing Tools
	SketchLink: Linking Sketches to Source Code Artifacts
	LivelySketches: Supporting Round-trip Sketching

	Conclusion: Tool Support

	Code Plagiarism: Stack Overflow Code Snippets in GitHub Projects
	Introduction
	Research Design
	Legal Situation
	Copyright Status of Stack Overflow Code Snippets
	Classification of Stack Overflow's License
	Stack Overflow's License Change Attempt
	Related Lawsuits

	Preliminary Study
	Method
	Results

	Usage Without Attribution (RQ1 – Phase 1)
	Method
	Results

	Usage Without Attribution (RQ1 – Phase 2)
	Method
	Calibration of the Code Clone Detector
	Results

	Usage Without Attribution (RQ1 – Phase 3)
	Method
	Results

	Summary (RQ1 – Phases 1–3)
	Frequency of Licensing Conflicts (RQ2)
	Adherence to Attribution Requirements (RQ3)
	Method
	Results

	Developers' Awareness Regarding SO's Licensing (RQ4)
	Method
	Results

	Limitations and Verifiability
	Related Work
	Stack Overflow and GitHub
	Licensing and Code Clones

	Conclusion

	Expertise Development: Towards a Theory of Software Development Expertise
	Introduction
	Research Design
	Phase 1: Grounded Theory
	Survey Design and Sampling
	Terminology
	Concepts
	Relationships

	Phase 2: Preliminary Conceptual Theory
	Concepts
	Relationships

	Phase 3: Revised Conceptual Theory
	Survey Design
	Sampling
	Concepts
	Relationships

	Experience and Expertise
	Programming Experience vs. Expertise
	Validity of Expertise Self-assessments

	Limitations and Threats to Validity
	Related Work and Operationalization
	Conclusion

	Methodological Insights: Issues in Sampling Software Developers
	Introduction
	Sampling Strategies
	Convenience Sampling
	Experience with Sampling Strategies

	Participant Demographics
	Ethical Considerations
	General Ethical Principles
	The CASRO Code of Ethics
	Ethics of Sampling Strategies

	Conclusion

	Open Data: Building and Maintaining the SOTorrent Dataset
	Introduction
	Dataset
	Database Schema
	Post Block Extraction
	Post Block Matching
	Similarity Metrics
	Ground Truth
	Matching Strategy
	Metrics Evaluation
	Analysis of False Positive and False Negative Predecessor Matches
	Revised Matching Strategy and Post Block Extraction

	Evolution of Stack Overflow Posts
	Quantitative Analysis
	Properties of Edited Posts

	Communication and Edit Patterns
	Quantitative Analysis
	Qualitative Analysis
	Visual Analysis Tool
	Patterns

	Code Clones on Stack Overflow
	Data Retrieval and Quantitative Analysis
	Qualitative Analysis

	Summary
	Related Work
	Conclusion

	Summary and Future Work
	List of Figures
	List of Tables
	Bibliography

