
Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

@s_baltes
s.baltes@uni-trier.de

Navigate, Understand, Communicate:
How Developers Locate Performance Bugs

Sebastian Baltes, Oliver Moseler, Fabian Beck, and Stephan Diehl
University of Trier, Germany

VISUS, University of Stuttgart, Germany

9th International Symposium on
Empirical Software Engineering and Measurement

October, 22-23 – Beijing, China

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Definitions

2

“A bug that affects speed or responsiveness.”
(Bugzilla@Mozilla)

“Defects where relatively simple source code changes can significantly
speed up software, while preserving functionality.”
(Jin et al. - Understanding and Detecting Real-World Performance Bugs, PLDI’12)

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Research Gap

3

Most existing debugging studies focused on how developers fix
functional bugs.

But:

Performance
• is a non-functional requirement
• is difficult to measure (benchmarks?)

Performance bugs
• may corrupt user experience
• may waste resources (time, energy)
• can be difficult to reproduce and locate
• require knowledge of program state and runtime

consumption

No study focusing on how developers locate (and fix) performance
bugs.

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Research Questions

4

RQ1:

How do developers navigate the source code and
what information and representation is supportive
for locating a performance bug?

RQ2:

How do developers try to understand and explain the
causes of performance bugs?

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Study Design

5

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Study Design

• Qualitative observation study
• Controlled setting
• 12 developers, pair programming
• Locate and fix four performance bugs in collection libraries

(Apache Commons Collections and Google Guava Libraries)

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Participants

7

• All male
• Between 22 and 43 years old
• All except one team had industry experience
• Good level of expertise in OOP, Java, and data structures
• Lack of experience with IntelliJ IDE
• Not much experience fixing performance bugs (rare event)

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Setup

8

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Visual Performance Analysis Tools

9

• Profiling tools record program runs and assign measured performance
values to code entities (e.g. runtime or memory consumption)

• We focus on runtime consumption and Java programs

• Standard user interface: Lists

VisualVM

YourKit

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Our Tool

10

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Navigation – IDE

11

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Navigation – Profiling Tool

12

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Data Collection

13

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Available Data

14

Tutorial

Warm-up task

Performance Bug

Structured Interview

Questionnaire

4x

Audio recording

Screen capture

IDE navigation log

Sketching video

Demographic Data

Interview transcripts

0 1 2

Visualization

Course of a study session:

Coding of interaction

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Results – RQ1

15

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Methods (RQ1)

RQ1:

How do developers navigate the source code and
what information and representation is supportive
for locating a performance bug?

0 1 2

Navigation visualization (bug 3)

Pattern search

• Started with first two sessions
• Short summaries of statements related to RQ
• Compared statements, identified similarities and

differences
• Result: Preliminary propositions with supporting

and refuting statements
• Continued with next session

Cross-case analysis

Interview transcripts (bug 1-4)

[Seaman99]

 containsAll
 contains

 iterator
 containsAll

 ValuesIterator

 getCollection

 get
 getEntry
 hash

PerformanceTest_03

AbstractCollection

MultiValueMap$Values

MultiValueMap$ValuesIterator

MultiValueMap

HashMap

Collection

0 1 2 3 4 5 6 7 8Team 6

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

RQ1: Navigation

17

RQ1.1: How was information from the profiling tool or other parts of the
IDE used to locate the performance bug?

• Dynamic runtime information important for navigation (Prop. 1.1)

Beside runtime information, the dynamic call graph
is important, but it can become too complex.
(à future work)

• Helpful strategy: Following high quantities of runtime in dynamic
call graph (Prop. 1.2)

• But: The more complex the performance bug is, the less helpful
the provided information becomes (Prop. 1.3)

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

RQ1: Navigation

18

RQ1.2: Is the in-situ visualization of the profiling data beneficial compared
to a traditional list representation?

• Integration into code view provides additional context for the profiling
data (Prop. 2.1)

18

vs.

Integrating source code and performance
information is a promising approach; list and in-situ
visualization seem to complement each other.

• List view not needed in this setting (test cases) (Prop. 2.2)

• But: List view could be good starting point for further analyses (Prop. 2.3)

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

RQ1: Navigation

19

RQ1.3: What navigation strategies do developers pursue to locate a
performance bug?

• About 70% of navigation through IDE, 30% with our tool

• Navigation with method call visualization dominant (in-situ)

• List view never used for bug 3

• Identified two navigation strategies:

Strategy 1 (Toggle): Frequent switching between test
class and and other classes related to bug
(IDE navigation).

Strategy 2 (Path Following): Follow dynamic
method calls with high runtime consumption
(In-situ visualization).

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

RQ1: Navigation

20

 getCollection

 containsAll
 contains

 iterator

 ValuesIterator

 get
 getEntry
 hash

PerformanceTest_03

MultiValueMap

Collection

AbstractCollection

MultiValueMap$Values

MultiValueMap$ValuesIterator

HashMap

0 1 2 3 4 5 6 7 8Team 4

 containsAll
 contains

 iterator
 containsAll

 ValuesIterator

 getCollection

 get
 getEntry
 hash

PerformanceTest_03

AbstractCollection

MultiValueMap$Values

MultiValueMap$ValuesIterator

MultiValueMap

HashMap

Collection

0 1 2 3 4 5 6 7 8Team 6

Strategy 1
(Toggle)

Strategy 2
(Path Following)

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Results – RQ2

21

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Methods (RQ2)

22

RQ2:

How do developers try to understand and explain the
causes of performance bugs?

Cross-case analysis

Interview transcripts (bug 1-4)

Descriptive statistics

Coding of interaction (bug 3)

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Methods (RQ2)

23

RQ2:

How do developers try to understand and explain the
causes of performance bugs?

Sketching video (bug 3)

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

RQ2: Understanding and Communicating

24

RQ2.1: How do developers communicate with each other when locating a
performance bug?

• 4 of 6 teams expressed first hypothesis about cause of bug in the

first half of session

• Driver and navigator mostly worked on same level of abstraction
• 3 teams had very active navigator (e.g. asking questions about

code, prompting driver to navigate to certain methods)

• 2 teams had very passive navigator (mostly observed)
• Different levels of expertise can be reason for active/passive role

Driver and navigator work on same level of
abstraction; interaction could be affected by
different levels of expertise.

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

RQ2: Understanding and Communicating

25

RQ2.2: Could sketches help to understand and communicate a
performance bug?

• Four teams spontaneously created a sketch while locating bug 3
• All sketches created by navigator
• Sketching static structure (e.g. MultiValueMap)
• Sketching dynamic aspects (execution of method contains(...))
• Keeping track of alternative hypotheses

Sketches considered mostly positive as an aid for
explaining a performance bug (in a PP setting).

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

• Unusual setting for participants (laboratory, libraries, IDE, tool, etc.)
à Tutorial phase, focus on third bug

• Teams did not know each other before
à Focus on third bug

• We helped participants if they got stuck
à Prepared hints beforehand, same order for all groups

• A part of the analysis (coding, cross-case analysis) conducted by two
researchers alone
à Discussed the results in group, went back to raw data if required

Threats to Validity

26

Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

Conclusion

27

@s_baltes
s.baltes@uni-trier.de

Data and supplementary material:
http://st.uni-trier.de/study-debugging

• First study focusing on how developers locate performance bugs

• Input for improving profiling tools:
• In-situ visualization of performance data helpful
• Dynamic call graph important (but: complexity needs to be

considered)
• Tools should support different strategies (toggle and path following)

• Future work:
• Trying to replicate results in industry context
• Coding of developer interactions for all bugs, searching for patterns

