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Definitions
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“A bug that affects speed or responsiveness.”
(Bugzilla@Mozilla)

“Defects where relatively simple source code changes can significantly 
speed up software, while preserving functionality.”
( Jin et al. - Understanding and Detecting Real-World Performance Bugs, PLDI’12)
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Research Gap
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Most existing debugging studies focused on how developers fix 
functional bugs.

But:

Performance
• is a non-functional requirement
• is difficult to measure (benchmarks?)

Performance bugs
• may corrupt user experience
• may waste resources (time, energy)
• can be difficult to reproduce and locate
• require knowledge of program state and runtime 

consumption

No study focusing on how developers locate (and fix) performance 
bugs.
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Research Questions
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RQ1:

How do developers navigate the source code and 
what information and representation is supportive 
for locating a performance bug?

RQ2:

How do developers try to understand and explain the 
causes of performance bugs?
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Study Design
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Study Design

• Qualitative observation study
• Controlled setting
• 12 developers, pair programming
• Locate and fix four performance bugs in collection libraries

(Apache Commons Collections and Google Guava Libraries)
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Participants
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• All male
• Between 22 and 43 years old
• All except one team had industry experience
• Good level of expertise in OOP, Java, and data structures
• Lack of experience with IntelliJ IDE
• Not much experience fixing performance bugs (rare event)
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Setup
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Visual Performance Analysis Tools
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• Profiling tools record program runs and assign measured performance 
values to code entities (e.g. runtime or memory consumption)

• We focus on runtime consumption and Java programs

• Standard user interface: Lists

VisualVM

YourKit
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Our Tool
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Navigation – IDE
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Navigation – Profiling Tool
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Data Collection
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Available Data
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Tutorial

Warm-up task

Performance Bug

Structured Interview

Questionnaire

4x

Audio recording

Screen capture

IDE navigation log

Sketching video

Demographic Data

Interview transcripts

0 1 2

Visualization

Course of a study session:

Coding of interaction
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Results – RQ1
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Methods (RQ1)

RQ1:

How do developers navigate the source code and 
what information and representation is supportive 
for locating a performance bug?

0 1 2

Navigation visualization (bug 3)

Pattern search

• Started with first two sessions
• Short summaries of statements related to RQ
• Compared statements, identified similarities and 

differences
• Result: Preliminary propositions with supporting 

and refuting statements
• Continued with next session

Cross-case analysis

Interview transcripts (bug 1-4)

[Seaman99]

 containsAll
 contains

 iterator
 containsAll

 ValuesIterator

 getCollection

 get
 getEntry
 hash

PerformanceTest_03

AbstractCollection

MultiValueMap$Values

MultiValueMap$ValuesIterator

MultiValueMap

HashMap

Collection

0 1 2 3 4 5 6 7 8Team 6



Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

RQ1: Navigation

17

RQ1.1: How was information from the profiling tool or other parts of the 
IDE used to locate the performance bug? 

• Dynamic runtime information important for navigation (Prop. 1.1)

Beside runtime information, the dynamic call graph 
is important, but it can become too complex.
(à future work)

• Helpful strategy: Following high quantities of runtime in dynamic 
call graph (Prop. 1.2)

• But: The more complex the performance bug is, the less helpful 
the provided information becomes (Prop. 1.3)
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RQ1: Navigation
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RQ1.2: Is the in-situ visualization of the profiling data beneficial compared 
to a traditional list representation?

• Integration into code view provides additional context for the profiling 
data (Prop. 2.1)

18

vs.

Integrating source code and performance 
information is a promising approach; list and in-situ 
visualization seem to complement each other.

• List view not needed in this setting (test cases) (Prop. 2.2)

• But: List view could be good starting point for further analyses (Prop. 2.3)
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RQ1: Navigation

19

RQ1.3: What navigation strategies do developers pursue to locate a 
performance bug? 

• About 70% of navigation through IDE, 30% with our tool

• Navigation with method call visualization dominant (in-situ)

• List view never used for bug 3

• Identified two navigation strategies:

Strategy 1 (Toggle): Frequent switching between test 
class and and other classes related to bug
(IDE navigation). 

Strategy 2 (Path Following): Follow dynamic 
method calls with high runtime consumption
(In-situ visualization).
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RQ1: Navigation
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Results – RQ2
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Methods (RQ2)
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RQ2:

How do developers try to understand and explain the 
causes of performance bugs?

Cross-case analysis

Interview transcripts (bug 1-4)

Descriptive statistics

Coding of interaction (bug 3)
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Methods (RQ2)
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RQ2:

How do developers try to understand and explain the 
causes of performance bugs?

Sketching video (bug 3)
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RQ2: Understanding and Communicating
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RQ2.1: How do developers communicate with each other when locating a 
performance bug?

• 4 of 6 teams expressed first hypothesis about cause of bug in the 

first half of session

• Driver and navigator mostly worked on same level of abstraction
• 3 teams had very active navigator (e.g. asking questions about 

code, prompting driver to navigate to certain methods)

• 2 teams had very passive navigator (mostly observed)
• Different levels of expertise can be reason for active/passive role

Driver and navigator work on same level of 
abstraction; interaction could be affected by 
different levels of expertise.



Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

RQ2: Understanding and Communicating
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RQ2.2: Could sketches help to understand and communicate a 
performance bug?

• Four teams spontaneously created a sketch while locating bug 3
• All sketches created by navigator 
• Sketching static structure (e.g. MultiValueMap)
• Sketching dynamic aspects (execution of method contains(...))
• Keeping track of alternative hypotheses 

Sketches considered mostly positive as an aid for 
explaining a performance bug (in a PP setting). 



Software Engineering GroupSebastian Baltes – How Developers Locate Performance Bugs (ESEM’15)

• Unusual setting for participants (laboratory, libraries, IDE, tool, etc.)
à Tutorial phase, focus on third bug

• Teams did not know each other before
à Focus on third bug

• We helped participants if they got stuck
à Prepared hints beforehand, same order for all groups

• A part of the analysis (coding, cross-case analysis) conducted by two 
researchers alone
à Discussed the results in group, went back to raw data if required

Threats to Validity
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Conclusion
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@s_baltes
s.baltes@uni-trier.de

Data and supplementary material:
http://st.uni-trier.de/study-debugging

• First study focusing on how developers locate performance bugs

• Input for improving profiling tools:
• In-situ visualization of performance data helpful
• Dynamic call graph important (but: complexity needs to be 

considered)
• Tools should support different strategies (toggle and path following)

• Future work:
• Trying to replicate results in industry context
• Coding of developer interactions for all bugs, searching for patterns


