ESEC/FSE 2018 Preprint, publication rights licensed to ACM.

Towards a Theory of Software Development Expertise

Sebastian Baltes
University of Trier
Trier, Germany
research@sbaltes.com

ABSTRACT

Software development includes diverse tasks such as implementing
new features, analyzing requirements, and fixing bugs. Being an
expert in those tasks requires a certain set of skills, knowledge, and
experience. Several studies investigated individual aspects of soft-
ware development expertise, but what is missing is a comprehensive
theory. We present a first conceptual theory of software develop-
ment expertise that is grounded in data from a mixed-methods
survey with 335 software developers and in literature on exper-
tise and expert performance. Our theory currently focuses on pro-
gramming, but already provides valuable insights for researchers,
developers, and employers. The theory describes important prop-
erties of software development expertise and which factors foster
or hinder its formation, including how developers’ performance
may decline over time. Moreover, our quantitative results show
that developers’ expertise self-assessments are context-dependent
and that experience is not necessarily related to expertise.

CCS CONCEPTS

« Software and its engineering;

KEYWORDS

software engineering, expertise, theory, psychology

ACM Reference Format:

Sebastian Baltes and Stephan Diehl. 2018. Towards a Theory of Software De-
velopment Expertise. In Proceedings of the 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’18), November 4-9, 2018, Lake Buena Vista, FL, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3236024.3236061

1 INTRODUCTION

An expert is, according to Merriam-Webster, someone “having or
showing special skill or knowledge because of what [s/he has] been
taught or what [s/he has] experienced” [74]. K. Anders Ericsson, a
famous psychologist and expertise researcher, defines expertise as
“the characteristics, skills, and knowledge that distinguish experts
from novices and less experienced people” [26]. For some areas,
such as playing chess, there exist representative tasks and objective
criteria for identifying experts [26]. In software development, how-
ever, it is more difficult to find objective measures for quantifying

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11...$15.00
https://doi.org/10.1145/3236024.3236061

Stephan Diehl
University of Trier
Trier, Germany
diehl@uni-trier.de

expert performance [78]. Bergersen et al. proposed an instrument to
measure programming skill [9], but their approach may suffer from
learning effects because it is based on a fixed set of programming
tasks. Furthermore, aside from programming, software develop-
ment involves many other tasks such as requirements engineering,
testing, and debugging [62, 96, 100], in which a software develop-
ment expert is expected to be good at.

In the past, researchers investigated certain aspects of software
development expertise (SDExp) such as the influence of program-
ming experience [95], desired attributes of software engineers [63],
or the time it takes for developers to become “fluent” in software
projects [117]. However, there is currently no theory combining
those individual aspects. Such a theory could help structuring exist-
ing knowledge about SDExp in a concise and precise way and hence
facilitate its communication [44]. Despite many arguments in favor
of developing and using theories [46, 56, 85, 109], theory-driven
research is not very common in software engineering [97].

With this paper, we contribute a theory that describes central
properties of SDExp and important factors influencing its formation.
Our goal was to develop a process theory, that is a theory intended
to explain and understand “how an entity changes and develops”
over time [85]. In our theory, the entities are individual software
developers working on different software development tasks, with
the long-term goal of becoming experts in those tasks. This fits the
definition of a teleological process theory, where an entity “constructs
an envisioned end state, takes action to reach it and monitors the
progress” [110]. The theory is grounded in data from a mixed-
methods survey with 335 participants and in literature on expertise
and expert performance. Our expertise model is task-specific, but
includes the notion of transferable knowledge and experience from
related fields or tasks. On a conceptual level, the theory focuses on
factors influencing the formation of SDExp over time. It is a first
step towards our long-term goal to build a variance theory [61, 67]
to be able explain and predict why and when a software developer
reaches a certain level of expertise [41, 85].

The theory can help researchers, software developers as well
as employers. Researchers can use it to design studies related to
expertise and expert performance, and in particular to reflect on
the complex relationship between experience and expertise (see
Section 6), which is relevant for many self-report studies. Software
developers can learn which properties are distinctive for experts in
their field, which behaviors may lead to becoming a better software
developer, and which contextual factors could affect expertise de-
velopment. If they are already “senior”, they can learn what other
developers expect from good mentors or which effects age-related
performance decline may have on them. Finally, employers can learn
what typical reasons for demotivation among their employees are,
hindering developers to improve, and how they can build a work
environment supporting expertise development of their staff.

© Baltes, Diehl 2018. This is the authors' version of the work.
It is posted here for your personal use, not for redistribution.
The definitive version is linked above.

https://doi.org/10.1145/3236024.3236061
https://doi.org/10.1145/3236024.3236061
Sebastian Baltes
ESEC/FSE 2018 Preprint, publication rights licensed to ACM.

Sebastian Baltes
© Baltes, Diehl 2018. This is the authors' version of the work. It is posted here for your personal use, not for redistribution. The definitive version is linked above.�

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

2 RESEARCH DESIGN

To describe our research design, we follow Tashakkori and Teddlie’s
methodology [104]. We designed a sequential mixed model study
(type VIII) with three phases (see Figure 1). We started with an open
online survey, which we sent out to a random sample of GitHub
developers (S1) to build a preliminary grounded theory of SDExp
(see Section 3). In a second phase, we combined the preliminary
grounded theory from the first phase with existing literature on
expertise and expert performance. The result of this combination
of inductive and deductive methods [41] was a preliminary concep-
tional theory of SDExp (see Section 4). In a third phase, we designed
a focused questionnaire to collect data for building a revised con-
ceptual theory that describes certain concepts of the preliminary
theory in more detail. We sent the focused questionnaire to two
additional samples of software developers (S2 and S3). Like in the
first phase, we analyzed the qualitative data from open-ended ques-
tions, this time mapping the emerging codes and categories to the
preliminary conceptual theory.

To complement our qualitative analysis, we conducted a quan-
titative analysis investigating developers’ self-assessment of pro-
gramming expertise and its relation to experience (see Section 6).
Please note that we planned the general research design, in par-
ticular the transitions between inductive and deductive steps [61],
before collecting the data. We provide all questionnaires, coding
schemes, and all non-confidential survey responses as supplemen-
tary material [6].

3 PHASE 1: GROUNDED THEORY

The goal of the first phase of our research was to build a grounded
theory (GT) of SDExp. The GT methodology, introduced by Glaser
and Strauss in 1967 [36], is an approach to generate theory from
qualitative data. Since its introduction, different approaches evolved:
Glaser’s school emphasized the inductive nature of GT, while Strauss
and Corbin focused on systematic strategies and verification [13, 19].
The third and most recent school of GT, called constructivist GT,
tried to find a middle ground between the two diverging schools
by building upon the flexibility of Glaser and Strauss’s original
approach, combining it with constructivist epistemology [13].

All three schools rely on the process of coding that assigns “sum-
mative, salient, essence-capturing” words or phrases to portions of
the unstructured data [91]. Those codes are iteratively and contin-
uously compared, aggregated, and structured into higher levels of
abstractions, the categories and concepts. This iterative process is
called constant comparison. We followed Charmaz’s constructivist
approach, dividing the analysis process into three main phases: (1)
initial coding, (2) focused coding and categorizing, and (3) theory
building. The last step tries to draw connections between the ab-
stract concepts that emerged from the data during the first two
phases, generating a unifying theory. An important aspect of GT
is that the abstractions can always be traced back to the raw data
(grounding). In the first step, the initial coding, it is important to re-
main open and to stick closely to the data [13]. Glaser even suggests
not to do a literature review before conducting GT research [68],
which is a rather extreme and debatable position [105]. We decided
to limited our literature review in the first phase to software en-
gineering literature and postponed the integration of results from

Sebastian Baltes and Stephan Diehl

Related

Work
Open Survey Deduction| Conceptual
[Devs Induction| Grounded Theory |

Focused Survey — Self-assessment

JavaDevs | , analysis
(s2)
(S1) Theory

2o
Conceptual
Theory Il
Experienced f y
Devs (S3)
\) L
T T
Phase 1 Phase 3

Phase 2

Figure 1: Research design

psychology literature to the second phase of our research. The main
research questions guiding this phase were:

RQ1: Which characteristics do developers assign to novices and
which to experts?
RQ2: Which challenges do developers face in their daily work?

Our main area of interest were the characteristics developers
assign to novices and experts (RQ1). However, as software develop-
ment experts are expected to master complex tasks efficiently [117],
we included a question about challenges developers face in their
daily work (RQ2) to identify such tasks.

3.1 Survey Design and Sampling

To answer our research questions, we designed an online question-
naire, which we sent to a random sample of software developers.
Our goal was to start open-minded, thus we primarily relied on
open-ended questions for data collection. The questionnaire con-
tained seven open-ended and four closed-ended questions related to
SDExp plus seven demographic questions. To prevent too broad and
general answers, we focused on expertise in one particular program-
ming language. We chose Java, because at the time we designed
the survey (October 2015) it was, according to various rankings,
the most popular programming language [12, 106]. We analyzed all
open-ended questions separately using Charmaz’s grounded theory
approach, performing all three constructivist GT phases (see above)
on the survey answers. After deductively revising the resulting GT
(see Section 4), we used theoretical sampling to collect more data
on certain concepts and again performed those three GT phases,
constantly comparing the new data to the data from the first itera-
tion (see Section 5). We used the closed-ended questions to describe
the samples and to analyze the relation between experience and
(self-assessed) expertise (see Section 6).

Qualitative researchers often rely on convenience sampling for
selecting their participants [5, 82]. However, we wanted to reach
a diverse sample of novices and experts, which is hard to achieve
with this sampling approach. Therefore, we drew our first sample
randomly from all users who were active on both Stack Overflow
(SO) and GitHub (GH) between January 1, 2014 and October 1, 2015.
Both platforms are very popular among software developers and
for both of them, demographic information about users is publicly
available [111]. Another motivation for this sampling strategy was
to be later able to correlate the self-assessments of developers with
their activity on GH and SO.

We derived our sampling frame from the data dumps provided by
Stack Exchange (August 18, 2015) [102] and GHTorrent (September
25, 2015) [39]. To match users on both platforms, we followed the
approach of Vasilescu et al. [111], utilizing the MD5 hash value of
users’ email addresses. For the SO users, we retrieved the email

Towards a Theory of Software Development Expertise

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

Table 1: Demographics of participants in samples S1-53: Work time dedicated to sw. dev.; GE: general experience (years), GRgem:
general expertise rating (semantic differential from 1=novice to 6=expert), JE: Java experience (years), JR,,,,: Java expertise.

Sample Age Work Time (%) GE (years) JE (years) GRgem (1-6) JRgem (1-6) N
M SD Mdn SD Mdn M Mdn M Mdn M Mdn M Mdn

S1 30.4 6.4 29.0 70.2 26.3 80 11.8 10.0 5.0 3.5 4.8 5.0 3.6 4.0 122

S2 31.6 10.0 30.0 69.5 26.4 80 12.7 10.0 7.6 6.0 4.8 5.0 4.4 5.0 127

S3 59.9 4.9 59.0 68.2 32.0 80 34.1 35.0 5.7 1.5 5.3 5.0 2.8 2.0 86

hashes from an old data dump released September 10, 2013 where
this information was directly available for all users. Further, for
users who set a Gravatar URL in their profile, we extracted the
email hash from there. In the end, we were able to retrieve the email
hashes for 3.8 million SO users (75% of all users in the 2015 dataset).
In the GHTorrent data dump, the email address was available for
6.6 million GH users (69% of all users in the dataset). To identify
active users, we checked if they contributed to a question (asked,
answered, or commented) on SO and committed to a project on
GH since January 1, 2014. This resulted in a sampling frame with
71,400 unique users from which we drew a random sample of 1,000
users. In the following, S1 denotes this sample.

The first iteration of the questionnaire was online from October
13, 2015 until November 11, 2015. Of the 1,000 contacted users,
122 responded (12.2% response rate). Of the 122 respondents, 115
identified themselves as male, one as female and six did not provide
their gender. The majority of respondents (67.2%) reported their
main software development role to be software developer, the second-
largest group were software architects (13.9%). Most participants
answered from Europe (49.2%) and North America (37.7%). Further
demographic information can be found in Table 1.

3.2 Terminology

According to Sjeberg et al., the building blocks of theories are its
core entities, the constructs, the relationships between these con-
structs, and the scope conditions that delineate a theory’s application
area [97]. To have a consistent terminology across the paper, we
use the term concepts instead of constructs for the central elements
of the presented theories.

The scope of all theories we built, including the GT, was to de-
scribe what constitutes SDExp and which factors influence its for-
mation, focusing on individual developers. In the second phase (see
Section 4), we added a task-specific notion of expertise and then
revised the resulting preliminary theory in a second inductive step
(see Section 5) to focus on programming-related tasks.

3.3 Concepts

Figure 2 shows the high-level concepts and relationships of the
grounded theory that resulted from our qualitative analysis of all
open-ended questions. Most answers regarding characteristics of
experts and novices (RQ1) were either related to having a certain de-
gree of knowledge in different areas or a certain amount or quality
of experience. We marked those concepts that constitute SDExp
in gray color. The factors contributing to the formation of SDExp,
and the results of having a certain degree of SDExp, have a white
background. Participants described typical behaviors, character
traits, and skills of experts. Many answers mentioned properties
that distinguish source code written by experts from source code
written by novices. In our notion, the quality of source code is
the result of having a certain level of knowledge and experience

and thus a measure of expert performance. When asked about chal-
lenges (RQ2), participants often named time-pressure and unrealis-
tic demands by managers or customers. Generally, most answers
related to challenges were not technical, but referred to human
factors. In the GT, we summarized these factors as work context.
In the following, we present the most frequent sub-categories of
the concepts mentioned above. The concepts are in bold font, the
(sub-)categories are in SMALL CAPITALS. We provide a full list of all
categories and subcategories as supplementary material [6].

Experience: Most statements that we assigned to this concept
referred to the QUANTITY of software development experience (e.g.,
in terms of years), but some also described its QuaLITY. Examples
for the latter include having built “everything from small projects
to enterprise projects” or “[experience] with many codebases”. In
particular, participants considered PROFESSIONAL EXPERIENCE, €.g.,
having “shipped a significant amount of code to production or to a
customer” and working on SHARED CODE to be important factors.

Knowledge: Since we specifically asked for Java, many answers
were LANGUAGE-SPECIFIC or referred to certain Java FRAMEWORKS.
Experts were described as having an “intimate knowledge of the
design and philosophy of the language” (DEPTH OF KNOWLEDGE),
which includes knowing “the shortcomings of the language [...] or
the implementation [...]” Answers also indicated the importance
of having a BROAD KNOWLEDGE about algorithms, data structures,
or different programming paradigms to bring “the wisdom of [...]
other philosophies into Java”.

Quality of source code: Regarding the quality of source code,
participants named several properties that source code of experts
should possess: It should be WELL-STRUCTURED and READABLE, con-
tain “comments when necessary”, be “optimized” in terms of PER-
FORMANCE and sustainable in terms of MAINTAINABILITY. One par-
ticipant summarized the code that experts write as follows: “Every
one can write Java code which a machine can read and process but
the key lies in writing concise and understandable code which [...]
people who have never used that piece of code before [can read]”

Behavior, character traits, and skills: For this concept, the
most common category was COMMUNICATION SKILLS. Experts should
be willing to “share [their] knowledge with other developers”, but
they should also know when to “ask for help”. Some participants

shapes

Knowledge

Behavior,
character traits,
and skills

Quality of

‘make more likely lead to
source code

to acquire better

Experience

Work context Influenicss

shapes

Figure 2: High-level concepts/relationships of GT (phase 1).

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

mentioned the role of experts as teachers, e.g. to train “younger
developers”. Another category was (SELF-)REFLECTION, meaning
reflecting on problems (“thinks before coding”) as well as on own
behavior (being “aware [of] what kind of mistakes he can make”).
Further, participants named PROBLEM-SOLVING SKILLS and attributes
that we summarized in a category named BEING FAST.

Work context: Many participants mentioned problems related
to pEOPLE affecting their work. One participant put it this way:
“Computers are easy. People are hard” Salient were the comments
about constant TIME PRESSURE, often caused by customers or the
management. Respondents found it challenging to maintain “qual-
ity despite pressure to just make it work”. One participant remarked
that “sometimes non-software managers think of software like man-
ufacturing: If 1 person works 400 parts in a day 10 should work
4000. But in software development, that analogy breaks down.”
There were also comments about team issues like “getting a big
team of developers adopt common standards of coding, design-
ing and unit testing.” Participants also complained about the lack
of well-defined REQUIREMENTS and the importance of good com-
MUNICATION: “[...] User’s cannot communicate what they want.
[...] Project managers who talk to the users don’t understand the
implications by the requirements and mostly don’t know enough
of the business process the user lives every day. Hence, he cannot
communicate the problem to the development team.”

3.4 Relationships

After structuring participants’ answers into concepts, categories,
and sub-categories, we looked at the answers again, trying to find
meaningful relationships. The result of this process is depicted in
Figure 2. In our notion, certain forms of behavior, and an individ-
ual developer’s character traits and general skills make it more
likely to gain the level of knowledge and experience to be con-
sidered an expert in software development, which then manifests
itself in the quality of source code the developer creates. How-
ever, gained knowledge and experience also affect an individual’s
behavior and shapes other skills. Moreover, the work context,
meaning, for example, the office, colleagues, customers, or the ap-
plication domain of a project, influence the behavior and thus the
formation of knowledge and experience.

Phase 1: The grounded theory describes SDExp as a combina-
tion of a certain quantity and quality of knowledge and experi-
ence, both general and for a particular programming language.
The work context, behavior, character traits, and skills influence
the formation of expertise, which can be observed when experts
write well-structured, readable, and maintainable source code.

4 PHASE 2: PRELIMINARY CONCEPTUAL
THEORY

As described in our research design, the next step after inductively
deriving a preliminary GT from the responses of the participants
in our first sample was to deductively embed this GT in existing
literature on expertise and expert performance. To this end, we re-
viewed psychology literature. Our main source was The Cambridge
Handbook of Expertise and Expert Performance [28] including the

Sebastian Baltes and Stephan Diehl

Education H General knowledge "ﬂ Mentoring ‘
generates transter{ | generates

IR
Task-specific knowledge

Task

Individual differences

Skills

makes more/less
likely to acquire

makes more/less

\MM likely to acquire

Task-specific experience

transfer

General experience

self-reflection feedback monitoring

Figure 3: High-level concepts and relationships of prelimi-
nary conceptual theory (phase 2).

referenced literature. This handbook is the first [28], and to the
best of our knowledge most comprehensive, book summarizing
scientific knowledge on expertise and expert performance. The re-
sult of this deductive step was a task-specific conceptual theory of
expertise development that is compatible with the grounded theory
from the first phase. Figure 3 shows our preliminary conceptual
theory, which we are going to present in this section.

Generally, process theories focus on events and try to find pat-
terns among them, leading to a certain outcome—variance theories
describe a certain outcome as a relationship between dependent
and independent variables [61]. The process that we describe with
our conceptual theory is the formation of SDExp, that is the path of
an individual software development novice towards becoming an
expert. This path consists of gradual improvements with many cor-
rections and repetitions [27], therefore we do not describe discrete
steps like, for example, the 5-stage Dreyfus model of skill acquisition
(see Section 6.2). Instead, we focus on the repetition of individual
tasks. In phase 3, we extended our conceptual theory with a fo-
cus on programming-related tasks (see Section 5), but the general
structure is flexible enough to be extended towards other software
development tasks as well [62, 96, 100]. Even with a focus on pro-
gramming expertise, the distinction between tasks is important.
For example, an excellent Java programmer is not automatically
an excellent Haskell programmer. Moreover, programming itself
includes diverse tasks, such as implementing new features or fixing
bugs, with a varying centrality and difficulty [117].

4.1 Concepts

In the following, we will describe the concepts we deductively
integrated into our grounded theory using literature on expertise
and expert performance.

Individual differences and behavior: We split the GT con-
cept behavior, character traits, and skills into individual differences
and behavior. We modeled behavior as being relative to a certain
task and as being influenced by individual differences [83] such
as mental abilities, personality, and motivation, which have long
been considered essential for general [11, 31, 43] and program-
ming performance [21]. Even if the general intelligence is not a
valid predictor for attaining expert performance in a domain [26],
improvements are constrained by an individual’s cognitive capaci-
ties [27]. Especially at the early stages of skill acquisition, general
intelligence is in fact an important factor [58]. It is also known that
mental abilities start to decline at a certain age [58]

Towards a Theory of Software Development Expertise

Acquiring expertise is not exclusively a cognitive matter” [50]—
developers’ personality and motivation influence behaviors that
may or may not lead to improvements of expertise [50, 101]. Gener-
ally, the term skill is defined as “an ability or proficiency acquired
through training and practice” [2]. Thus, according to that defini-
tion, being a good software developer is also a skill. However, in the
scope of our theory, we limit the term skill to fundamental skills
such as communication and social skills [2].

Task context: In the GT, we described how the work context,
including team members, managers, and customers, can influence
developers’ behavior. In the conceptual theory, we considered this
context to be task-specific (e.g., communication with customers is
more likely to happen during requirements analysis and communi-
cation with colleagues when refactoring an existing module). The
task context captures all organizational, social [77], and technical
constraints that are relevant for the task at hand.

Knowledge and experience: Knowledge can be defined as a
“permanent structure of information stored in memory” [88]. Some
researchers consider a developer’s knowledge base as the most
important aspect affecting their performance [21]. Studies with
software developers suggest that “the knowledge base of experts is
highly language dependent”, but experts also have “abstract, trans-
ferable knowledge and skills” [100]. We modeled this aspect in our
theory by dividing the central concepts knowledge and experience
from the GT into a task-specific and a general part. This is a simplifi-
cation of our model, because the relevance of knowledge and experi-
ence is rather a continuum than dichotomous states [114]. However,
Shneiderman and Mayer, who developed a behavioral model of soft-
ware development, used a similar differentiation between general
(“semantic”) and specific (“syntactical”) knowledge [94]. General
knowledge and experience does not only refer to technical aspects
(e.g., low-level computer architecture) or general concepts (e.g.,
design patterns), but also to knowledge about and experience with
successful strategies [57, 98, 99].

Performance, education, and monitoring: As mentioned in
the introduction, it may be difficult to find objective measures for
quantifying expert performance in software development. However,
there exist many metrics and measures that can be evaluated regard-
ing their validity and reliability for measuring expert performance.
Respondents from the first sample mentioned different character-
istics of experts’ source code, but also the time it takes to develop
a solution. This is related to the area of program comprehension
where task correctness and response time are two important mea-
sures [25]. At this point, our goal is not to treat performance as
a dependent variable that we try to explain for individual tasks,
we rather consider different performance monitoring approaches
to be a means for feedback and self-reflection. For our long-term
goal to build a variance theory for explaining and predicting the
development of expertise, it will be more important to be able to
accurately measure developers’ performance.

Education and mentoring help building knowledge and thus con-
tribute to the development of expertise [30]. Having a teacher or
mentor is particularly important for deliberate practice [29, 30],
which is a central aspect of our theory (see below).

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

4.2 Relationships

The relationships in our theory are intentionally labeled with rather
generic terms such as “affects” or “generates”, because more re-
search is needed to investigate them. Nevertheless, we want to
point out two central groups of relationships: deliberate practice
and the influence of monitoring, feedback, and self-reflection.

Deliberate practice: Having more experience with a task does
not automatically lead to better performance [29]. Research has
shown that once an acceptable level of performance has been at-
tained, additional “common” experience has only a negligible effect,
in many domains the performance even decreases over time [32].
The length of experience has been found to be only a weak corre-
late of job performance after the first two years [27]—what mat-
ters is the quality of the experience. According to Ericsson et al.,
expert performance can be explained with “prolonged efforts to
improve performance while negotiating motivational and external
constraints” [29]. For them, deliberate practice, meaning activities
and experiences that are targeted at improving the own perfor-
mance, are needed to become an expert. For software development,
Zhou and Mockus found that developers can improve their per-
formance over time by continuously increasing the difficulty and
centrality of development tasks [117], which is in line with the
concept of deliberate practice. Traditionally, research on deliberate
practice concentrated on acquired knowledge and experience to
explain expert performance [11, 31, 43]. However, later studies have
shown that deliberate practice is necessary, but not sufficient, to
achieve high levels of expert performance [11]—individual differ-
ences play an important role [43] (see above).

Monitoring, feedback, and self-reflection: A central aspect
of deliberate practice is monitoring one’s own performance, and
getting feedback, for example from a teacher or coach [27]. Gen-
erally, such feedback helps individuals to monitor their progress
towards goal achievement [64]. Moreover, as Tourish and Hargie
note, “[t]he more channels of accurate and helpful feedback we
have access to, the better we are likely to perform.” [107]. In areas
like chess or physics, studies have shown that experts have more
accurate self-monitoring skills than novices [14]. In our model, the
feedback relation is connected to the concept task context as we
assumed that feedback for a software developer most likely comes
from co-workers or supervisors. To close the cycle, monitoring and
self-reflection influence a developer’s motivation and consequently
his/her behavior. In the revised conceptual theory (see Section 5),
we also included mentors in this feedback cycle.

Phase 2: The preliminary conceptual theory builds upon the
grounded theory. Among other changes, the theory introduces
a task-specific view on expertise, separates individual differ-
ences and behavior, and embeds the concept of deliberate prac-
tice, including the relationships monitoring, feedback, and self-
reflection. Moreover, instead of focusing on source code, it intro-
duces the general concept of performance as a result of having
a certain level of expertise.

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

Designing

Sebastian Baltes and Stephan Diehl

architecture

Algorithms and data
structures

Design and Programming
architectural patterns paradigms

Debugging

Requirements

Testing

Writing code

engineering |

[The product

Work as challenge

Project
management

itself

] feedback

Seeing
usage

General knowledge H Mentoring*l—

Quality

Task

Personal priorities
\v}\ generates \ teS

—

Structure Peer-review }
Maintainability Static analysis J

Code Quality

ivi differences
[Helping Openness
others Motivation I.._ makes more/less
Agreeableness likely to acquire
c - Personality (FFM) affect
onscientiousness I/

Mental abilities | makes more/less
Age-related decline Skills Task context | /ikely to acquire affects

Task-specific experience *

Commit
frequency
Loc
added/deleted
#lssues
resolved

Productivity

Problem-solving

Communication

self-reflection feedback monitoring

transfer

Expected vs.
actual time

Continuous
learning
Assessing
trade-offs

Time tracking Project management
Trainin Team Information Freed Experi-
9 structure exchange reedom mentation Issue tracking Development diaries

Figure 4: High-level concepts/categories of revised conceptual theory (phase 3); asterisk refers to description in the text.

5 PHASE 3: REVISED CONCEPTUAL THEORY

The goal of the third and last phase was to validate the general
design of our theory and to collect more data about certain concepts,
in particular the ones related to deliberate practice. Our focus
was on programming-related tasks, but the theory can as well be
extended and operationalized for other software development tasks
in future work.

5.1 Survey Design

We revised the open questionnaire from phase 1 to focus on specific
concepts, in fact most questions of the resulting focused question-
naire were directly related to individual concepts of the preliminary
theory. We then conducted theoretical sampling to “elaborate and
refine the categories constituting [our] theory” [13], surveying two
additional samples of software developers. We tried to reach active
Java developers (S2) and very experienced developers (S3). We tar-
geted Java developers, because we wanted to compare participants’
general experience and expertise with their experience and exper-
tise in one particular programming language (see Section 6). We
further targeted experienced developers, because in the first phase
especially this group of participants provided well-elaborated and
insightful answers. Please note that the goal of theoretical sampling
is “conceptual and theoretical development”, not “increasing the
[...] generalizability” of results [13].

We revised and extended our two initial research questions to
adjust them to our preliminary conceptual theory. Beside asking
for typical character traits of experts (RQ1.1), we now asked in par-
ticular for traits that are supportive for becoming an expert (RQ1.2)
to collect more data on factors influencing the formation of SDExp.
Due to the importance of mental abilities in expert development
and the fact that they start to decline at a certain age [58], we asked
about situations where developers’ performance declined over time
(RQ1.3). Since our theory is task-specific, we also asked for tasks
that an expert should be good at (RQ1.4). When we asked partic-
ipants in S1 for challenges in their daily work (RQ2), they often

referred to their work context and in particular to people-related
issues. The work context may also influence developers’ motiva-
tion, which plays an important role in expertise development (see
Section 4.1). Thus, we changed RQ2 to focus more on those two
aspects. Since we deductively included the concept of deliberate
practice in our theory, we added questions about monitoring (RQ3.1)
and mentoring (RQ3.2), which are important aspects of deliberate
practice. We provide the research questions and the corresponding
survey questions as supplementary material [6].

During the analysis of samples S2 and $3, we build upon our
conceptual theory, mapping the emerging codes and categories to
the existing theory. This procedure is similar to what Saldana calls
elaborative coding [91]. Figure 4 depicts the high-level concepts and
categories of our revised conceptual theory. Some categories are not
shown in the figure, but are described in this section. We provide a
full list of all (sub-)categories as supplementary material [6].

5.2 Sampling

As mentioned in the previous section, our preliminary conceptual
theory guided the sampling (theoretical sampling [13, 82]). Our goal
was to reach active Java developers (52) as well as very experienced
developers (S3). We retrieved the sampling frame for those samples
from the Stack Exchange Data Dump [103] released January 1, 2016
and the GHTorrent data dump [39] released February 16, 2016.

For the Java sample (S2), we started by identifying active GH
projects. We first filtered out the projects that were not deleted, not a
fork, had at least two contributing users, and had at least 10 commits.
Then, to select non-trivial Java projects, we only considered projects
with at least 300 kB of Java source code (sum of file sizes of all Java
files in the project). From the resulting 22,787 Java GH projects, we
created a sampling frame with all users who contributed (committed
or merged a pull request) to one of the selected projects and who
pushed at least 10 commits between January 1, 2015 and December
31, 2015. From the 44,138 users who satisfied the above criteria, we
contacted the ones with a public email address on their profile page
(n=1,573).

Towards a Theory of Software Development Expertise

General experience Java experience

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

General expertise Java expertise

-

40

30
1 1
oo @
«}cm@
40
1 1

&4 T | - 84 o & 7 ° ° :
i L —— | | ! ! ! !
e 4 — E 8 eq i E 1 1 - = ° SR :
od — i ° E p—— Q i -4 i
T T T T T T T T T T T T
$1(n=122) S2(n=127) S3(n=86) S1(n=122) S2(n=127) S3(n=86) S1(n=122) S2(n=127) S3(n=86) S1(n=122) S2(n=127) S3(n=86)

Figure 5: General/Java experience (GE, JE) and general/Java expertise rating (GRgem, JR¢p,) of participants in 51, S2, and S3.

With the third sample (S3), we wanted to reach very experienced
users. Therefore, we again combined data from SO and GH. We used
the age of a developer as a proxy variable for their experience. For
GH users, the age was not available, but 11% of the users in the SO
dump provided their age. To select experienced users, we filtered
all SO users with age > 55 years and < 80 years and matched them
with a GH account using the hash value of their email address. This
resulted in a sample of 877 experienced users.

The focused questionnaire we used in the third phase contained
nine open-ended and nine closed-ended questions, three of them
only visible depending on previous answers, plus seven demo-
graphic questions. The full questionnaire is available as supple-
mentary material [6]. This iteration of the questionnaire was online
from February 18, 2016 until March 3, 2016 (S2) and from February
19, 2016 until March 4, 2016 (S3). Of the 1,573 contacted users in
S2, 30 had an invalid email address and could not be reached. In
the end, 127 participants filled out the questionnaire (response rate
8.2%). Of the 877 users in $3, 18 had an invalid email address and
91 participants completed the questionnaire (response rate 10.6%).
We removed five participants from S3 because their answers either
indicated that the age information from SO was not correct or that
they were not active software developers. This lead to 86 responses
available for analysis. Overall, combining S2 and S3, we had 213
valid responses in phase 3.

In S2, 119 respondents identified themselves as male, three as fe-
male and five did not provide their gender (S3: 84/1/1). The majority
of respondents (S2: 64.6%, S3: 61.6%) reported their main software
development role to be software developer, the second-largest group
were software architects (S2: 13.4%, S3: 17.5%). In S2, most partici-
pants answered from Europe (47.2%) and North America (32.3%), in
53 the order was reversed (North America (67.4%), Europe (23.3%)).
Further demographic information can be found in Table 1.

Comparing the demographics of the first two samples, we can see
that S1 and S2 are quite similar, except for the fact that participants
in 52 had more experience with Java (Mdn 3.5 vs. 6 years) and rated
their Java expertise to be higher (Mdn 4 vs. 5). This indicates that
our sampling approach was successful in reaching active Java de-
velopers. In §3, the values for the amount of professional work time
dedicated to software development are quite similar to the other
two samples. However, the developers in this sample are much older
(M 59.9 vs. 30.4/31.6) and have much more general programming
experience (Mdn 35 vs. 10/10). This indicates that our sampling
approach for S3 was successful in reaching developers with a long
general programming experience. However, many developers in
S3 have little Java experience (Mdn 1.5 years) and also rated their

Java expertise relatively low (Mdn 2). One reason for this could be
that one quarter of the participants had a programming experience
of 40 years or more (Q3 = 40) and compared to this time frame,
Java is a relatively young programming language (introduced 1995).
The boxplots in Figure 5 visualize the differences in general/Java
experience and expertise between the three samples.

5.3 Concepts

Figure 4 shows the revised conceptual theory resulting from our
analysis of the closed- and open-ended answers of samples S2 and
S3. In the following, we describe the most frequent (sub-)categories
for the high-level concepts of our theory that emerged during
the analysis and combine those qualitative results with quanti-
tative evaluations where possible. For each concept, we indicate
when there were notable differences between the answers in 52
and S3. Like before, we write the concepts in bold font and the
(sub-)categories in SMALL CAPITALS. We also provide the number of
answers we assigned to each concept or category (in brackets). We
only present the most frequent categories and provide the complete
coding schema as supplementary material [6].

Tasks: Since our SDExp model is task-specific, we asked our
participants to name the three most important tasks that a software
development expert should be good at. The three most frequently
mentioned tasks were DESIGNING SOFTWARE ARCHITECTURE (95),
WRITING SOURCE CODE (91), and ANALYZING AND UNDERSTANDING
REQUIREMENTS (52). Many participants not only mentioned the
tasks, but also certain quality attributes associated with them, for
example “architecting the software in a way that allows flexibility
in project requirements and future applications of the components”
and “writing clean, correct, and understandable code”. Other men-
tioned tasks include TESTING (48), COMMUNICATING (44), STAYING
UP-TO-DATE (28), and DEBUGGING (28). Our theory currently focuses
on tasks directly related to programming (see Figure 4), but the re-
sponses show that it is important to broaden this view in the future
to include, for example, tasks related to requirements engineering
(ANALYZING AND UNDERSTANDING REQUIREMENTS) or the adaption
of new technologies (STAYING UP-TO-DATE).

Experience, knowledge, and performance: Like in the first
phase, we asked participants about general attributes of software
development experts. Aspects like having experience (26), a broad
general knowledge (35) about “paradigms [...], data structures,
algorithms, computational complexity, and design patterns”, and an
“intimate” knowledge about a certain programming language (task-
specific knowledge (30)) were important. In particular, knowledge

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

about SOFTWARE ARCHITECTURE, including “modularization” and
“decomposition”, was frequently named (22). Interestingly, 20 of
the 22 answers mentioning software architecture came from the
sample of active Java developers. Also similar to the first phase,
participants described properties of experts’ source code such as
MAINTAINABILITY (22), CLEAR STRUCTURE (12), or PERFORMANCE (9).
The answers from S2 and S3 supported the general structure of our
theory, which we derived inductively in phase 1 and deductively in
phase 2. Thus, we will focus on new aspects and in particular on
factors influencing the formation of SDExp in the following.

Individual differences: We asked for specific characteristics of
experts and in particular for character traits that support expertise
development. Regarding the personality of experts, participants
often described three properties that are also present in the pop-
ular five factor personality model (FFM) [70]: According to our
participants, experts should be OPEN-MINDED (42) and curIouUs (35)
(FFM: openness), be TEAM PLAYERS (37) (FFM: agreeableness), and
be thorough and pay ATTENTION TO DETAIL (FFM: conscientious-
ness). Two other important traits were being PATIENT (26) and being
SELF-REFLECTED (20). The latter is an important connection to the
concept of deliberate practice that we introduced in the previous
phase and includes understanding one’s “weaknesses and strengths”
and “the ability to learn from prior mistakes”.

Regarding skills that an expert should possess, PROBLEM-SOLVING
(84) was most frequently named. Sub-categories of problem solving
are ABSTRACTION/DECOMPOSITION (30), ANALYTICAL THINKING (20),
and LOGICAL THINKING (17). An expert can “break a giant problem
into the little pieces that can be solved to add back up to the whole”.
Examples where an analytical approach is needed include bug fix-
ing or “mapping the problem domain into the solution space”. A
second important skill was having the “drive to keep learning”,
which some participants described as CONTINUOUS LEARNING (55).
Moreover, like in the first phase, COMMUNICATION SKILLS (42) were
frequently named. In the answers of this iteration, those skills were
often mentioned together with the task of understanding and imple-
menting REQUIREMENTS (32): An expert should be “a good listener
during requirement gathering”, understand “a customer’s desires”,
“work out what is really needed when the client can only say what
they think they want”, and should be able to “explain what he is
doing to non developers”. According to our participants, another
important skill is being able to assess TRADE-OFFs (19) when com-
paring alternative solutions. Trade-offs can exist between “design,
maintainability, [and] performance”. Experts should be “able to
discern the differences between early optimization and important
design decisions for the long term goal”, which is closely related to
the concept of technical debt in software projects [59].

Mentoring: More than half the the participants in $2 and S3
(54.3%) had a (former) colleague or teacher whom they would de-
scribe as their mentor in becoming a better software developer. We
asked those participants to describe their mentor(s). Six categories
emerged during the initial and focused coding of participants’ an-
swers. One category, HAVING TIME, was only present in the answers
from S3: Eight experienced developers named aspects such as tak-
ing time to explain things or honoring solutions that take more
time in the beginning, but save time on the long run.

Sebastian Baltes and Stephan Diehl

Regarding the mentor’s ROLE, SENIOR DEVELOPER (15), PROFESSOR
OR TEACHER (13) and PEER (12) were the most common answers.
Two participants noted that their mentor was actually a JuNIOR
DEVELOPER younger than themselves. What is important are a men-
tor’s CHARACTER (29), SKILLS (19), his/her EXPERIENCE (16), and
his/her role as a source for FEEDBACK (20) and as a MOTIVATOR (19).
The most common characteristics of mentors were being GUIDING
(10), PATIENT (8), and OPEN-MINDED (7). The most important aspect
of a mentor’s FEEDBACK were comments about CODE QUALITY (7).
What participants motivated most was when mentors posed CHAL-
LENGING tasks. In summary, we can conclude that the description of
good mentors resembles the description of software development
experts in general.

Monitoring and self-reflection: We asked participants if they
regularly monitor their software development activities. Combin-
ing the answers from S2 and S3, 38.7% of the 204 participants who
answered that question said that they regularly monitor their ac-
tivity. We asked those participants how they usually monitor their
development activity.

In both samples, the most important monitoring activity was
PEER REVIEW (16), where participants mentioned asking co-workers
for feedback, doing code-review, or doing pair-programming. One
participant mentioned that he tries to “take note of how often
[he] win[s] technical arguments with [his] peers”. Participants also
mentioned TIME TRACKING (14) tools like WakaTime or RescueTime,
ISSUE TRACKING (11) systems like Jira or GitHub issues, and PROJECT
MANAGEMENT (14) tools like Redmine and Scrum story points as
sources for feedback, comparing expected to actual results (e.g.,
time goals or number of features to implement). Three developers
reported writing a DEVELOPMENT DIARY.

Regarding employed metrics, participants reported using simple
metrics such as the COMMIT FREQUENCY, LINES OF CODE ADDED /
DELETED, or number of 1SSUES RESOLVED. Further, they reported
to use STATIC ANALYSIS (18) tools such as SonarQube, FindBugs,
and Checkstyle, or to use GITHUB’S ACTIVITY OVERVIEW (10). In
this point, there was a difference between the answers in S2 and
S3: GitHub’s activity overview was mentioned almost exclusively
by the active Java developers (9). Three developers were doubtful
regarding the usefulness of metrics. One participant noted: “I do not
think that measuring commits [or] LOC [...] automatically is a good
idea to rate performance. It will raise competition, yes—but not
the one an employer would like. It will just get people to optimize
whatever is measured.” The described phenomenon is also known
as Goodhart’s law [16, 38].

Motivation: To assess developers’ motivation, we asked our
participants what the most rewarding part of being a software de-
veloper is for them. Many participants were intrinsically motivated,
stating that PROBLEM SOLVING (46) is their main motivation—one
participant wrote that solving problems “makes [him] feel clever,
and powerful” Another participant compared problem solving to
climbing a mountain: “I would equate that feeling [of getting a fea-
ture to work correctly after hours and hours of effort] to the feeling
a mountain climber gets once they reach the summit of Everest.”
Many developers enjoy seeing the RESULT (53) of their work. They
are particularly satisfied to see a solution which they consider to
be of high QuALITY (22). Four participants mentioned refactoring

Towards a Theory of Software Development Expertise

as a rewarding task. One answered: “The initial design is fun, but
what really is more rewarding is refactoring” Others stressed the
importance of CREATING SOMETHING NEW (19) and HELPING OTHERS
(37). Interestingly, MONEY was only mentioned by six participants
as a motivation for their work.

Work context: To investigate the influence of the work context
on expertise development, we asked what employers should do
in order to facilitate a continuous development of their employ-
ees’ software development skills. We grouped the responses into
four main categories: 1. ENCOURAGE LEARNING (70), 2. ENCOUR-
AGE EXPERIMENTATION (61), 3. IMPROVE INFORMATION EXCHANGE
(53), and 4. GRANT FREEDOM (42). To ENCOURAGE LEARNING, em-
ployers may offer in-house or pay for external TRAINING COURSES
(34), pay employees to visit CONFERENCES (15), provide a good ana-
log and/or digital LIBRARY (9), and offer MONETARY INCENTIVES
for self-improvement (7). The most frequently named means to
ENCOURAGE EXPERIMENTATION were motivating employees to pur-
sue SIDE PROJECTS (29) and building a work environment that is
open for NEW IDEAS AND TECHNOLOGIES (23). To IMPROVE INFOR-
MATION EXCHANGE between development teams, between different
departments, or even between different companies, participants
proposed to FACILITATE MEETINGS (16) such as agile retrospectives,
“Self-improvement Fridays”, “lunch-and-learn sessions”, or “Tech-
nical Thursday” meetings. Such meetings could explicitly target
information exchange or skill development. Beside dedicated meet-
ings, the idea of developers ROTATING (15) between teams, projects,
departments, or even companies is considered to foster expertise
development. To improve the information flow between develop-
ers, practices such as MENTORING (9) or CODE REVIEWS (8) were
mentioned. Finally, GRANTING FREEDOM, primarily in form of LESs
TIME-PRESSURE (18), would allow developers to invest in learning
new technologies or skills.

Performance decline: We asked participants if they ever ob-
served a significant decline of their own programming performance
or the performance of co-workers over time. Combining the an-
swers from S2 and S3, 41.5% of the 205 participants who answered
that question actually observed such a performance decline over
time. We asked those participants to describe how the decline man-
ifested itself and to suggest possible reasons. The main categories
we assigned to those answers were: 1. different reasons for DE-
MOTIVATION (34), 2. changes in the WORK ENVIRONMENT (32), 3.
AGE-RELATED DECLINE (13), 4. CHANGES IN ATTITUDE (10), and 5.
SHIFTING TOWARDS OTHER TASKS (7). The most common reason
for an increased DEMOTIVATION was NON-CHALLENGING WORK (8),
often caused by tasks becoming routine over time. One partici-
pant described this effect as follows: “I perceived an increasing
procrastination in me and in my colleagues, by working on the
same tasks over a relatively long time (let’s say, 6 months or more)
without innovation and environment changes.” Other reasons in-
cluded not seeing a clear VISION OR DIRECTION in which the project
is or should be going (7) and missing REWARD for high-quality work
(6). Regarding the WORK ENVIRONMENT, participants named STRESS
(6) due to tight deadlines or economic pressure (“the company’s
economic condition deteriorated”). Moreover, bad MANAGEMENT
(8) or TEAM STRUCTURE (5) were named. An example for bad man-
agement would be “[h]aving a supervisor/architect who is very

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

poor at communicating his design goals and ideas, and refuses to
accept that this is the case, even when forcibly reminded”. CHANGES
IN ATTITUDE may happen due to personal issues (e.g., getting di-
vorced) or due to shifting priorities (e.g., friends and family getting
more important). When developers are being promoted to team
leader or manager, they SHIFT TOWARDS OTHER TASKS, resulting in
a declining programming performance.

AGE-RELATED DECLINE was described in both samples, but the
more elaborate answers came from the experienced developers. We
consider the investigation of age-related performance decline in
software development, together with the consequences for individ-
ual developers and the organization, to be an important area for
future research. To illustrate the effects that age-related decline may
have, we provide four verbatim quotes by experienced developers:

“In my experience (I started programming in 1962), new languages,
systems, hardware became more complex and more diverse, program-
ming became more complex. In my 50s I found it difficult to keep up
with new paradigms and languages. So I turned to technical writing
and eventually stopped programming.” (software developer, age 72)

“For myself, it’s mostly the effects of aging on the brain. At age
66, I can’t hold as much information short-term memory, for example.
In general, I am more forgetful. I can compensate for a lot of that by
writing simpler functions with clean interfaces. The results are still
good, but my productivity is much slower than when I was younger.”
(software architect, age 66)

“Programming ability is based on desire to achieve. In the early
years, it is a sort of competition. As you age, you begin to realize that
outdoing your peers isn’t all that rewarding. [...] I found that I lost
a significant amount of my focus as I became 40, and started using
drugs such as ritalin to enhance my abilities. This is pretty common
among older programmers.” (software developer, age 60)

“I've been in the software industry for 36 years. [...] It seems as
if for the first half or two thirds of that time I was fortunate to be
involved in areas at the forefront of the technology wave [...]. For the
last 10-15 years though, I have increasingly had the feeling that waves
of technology were passing me by [...]. Once I do start to get involved
[...] there is a huge learning curve to overcome and I labour to deliver
stories as rapidly as younger colleagues who have been immersed in
the relevant technology for longer” (software developer, age 57)

5.4 Relationships

The only relationships we added are related to the concept of men-
toring. As mentioned above, participants described mentors as
an important source for FEEDBACK and as MOTIVATORs. Thus, we
connected mentoring to the corresponding concepts motivation
and feedback in the revised conceptual theory.

Phase 3: To refine and elaborate certain concepts of our pre-
liminary conceptual theory, we conducted a second inductive
step, collecting data from two additional samples of software
developers. We added details about individual differences and
task contexts that foster the formation of SDExp, and further
investigated concepts such as monitoring, mentoring and self-
reflection, which are related to deliberate practice. We also asked
about performance decline over time and identified age-related
decline as a problem for older software developers.

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

6 EXPERIENCE AND EXPERTISE

Since software developers’ expertise is difficult to measure [78],
researchers often rely on proxies for this abstract concept [95].
We investigated the relationship and validity of the two proxies
length of experience and self-assessed expertise to provide guidance
for researchers.

6.1 Programming Experience vs. Expertise

As mentioned above, we asked participants for their general and
Java programming experience (years) and for a self-assessment of
their general and Java expertise (semantic differential from 1=novice
to 6=expert), see Table 1 and Figure 5. To explore how experience,
self-assessed expertise, and other variables are related, we employed
the nonparametric Spearman’s rank correlation coefficient (p). Our
interpretation of p is based on Hinkle et al’s scheme [47]: low
(0.3 < |p| < 0.5), moderate (0.5 < |p| < 0.7), high (0.7 < |p| < 0.9),
and very high correlation (0.9 < |p| < 1). We chose this non-
parametric test because not all variables we tested had interval
scaling and not all of them were normally distributed.

We highlight important correlations in the following and provide
the complete correlation table as supplementary material [6]. For
samples S1 and S2, the general experience in years (GE) correlates
at least moderately with the self-assessed general expertise rating
(GRgem) and the participants’ age in years. Interestingly, this corre-
lation cannot be observed for the experienced developers (S3). For
the active Java developers (52), the general experience (GE) and the
Java experience (JE) have a high correlation. The Java experience
(JE) has a high correlation with the self-assessed Java expertise rat-
ing (JRgp,) for all three samples, and a moderate correlation with
the age for the active Java developers (S2).

From the observed correlations, we cannot draw consistent con-
clusions that are valid for all three samples and for both types of
experience (general and Java). Our interpretation of these results is
that, depending on the background of the participants, experience
in years can or cannot be a valid proxy for (self-assessed) program-
ming expertise. Generally, despite the fact that most researchers
would probably agree with the definition of expertise as achieving
“outstanding performance” [31], in many empirical studies program-
ming expertise has been operationalized as years (or months) of
programming experience [95, 100]. Our results, which suggest that
this operationalization may not be valid, is in line with studies
showing that excellent software professionals have broader but not
necessarily longer experience [22, 98-100].

6.2 Validity of Expertise Self-assessments

In the previous subsection, we motivated that experience may not
always be a valid proxy for expertise. We were also interested in the
validity of self-assessed expertise, which is, like other self-reports,
context-dependent [93]. The validity of self-assessed expertise is
related to the concept of self-reflection in our conceptual theory,
but has also methodological implications for software engineering
research in general, because self-assessed programming expertise
is often used in studies with software developers to differentiate be-
tween novices and experts [95]. To analyze the influence of question
context on expertise self-assessments, we asked the participants in

Sebastian Baltes and Stephan Diehl

samples S2 and S3 for a second self-assessment of their Java exper-
tise at the end of the online survey. At that point, we did not only
provide a semantic differential scale like in the beginning of the
survey (JRy.,,, see Table 1), but also a description of the rating scale
stages based on the 5-stage Dreyfus model of skill acquisition [24]
(JRgre), ranging from novice (1) to expert (5). This model has been
applied in various contexts, but researchers also discussed its limita-
tions [84]. We based our description of the Dreyfus model on a later
description by Stuart Dreyfus [23] and an adapted version by Andy
Hunt [49]. We provide the description of the five stages, which we
used in the focused questionnaire, as supplementary material [6].
The goal of this setup was to investigate if providing additional
context has a significant influence on developers’ self-assessment
compared to a semantic differential scale without context.

When designing the initial questionnaire, we chose a 6-point
scale for the expertise rating such that participants have to decide
whether they consider themselves to be either on the novice (1-3) or
expert (4-6) side of the scale, without the option to select a middle
value [35, 80]. To be able to compare the ratings, we had to adjust
JRem to be in range [1, 5] using the following function: adj(x) =
% + %x. To test for significant differences between the two ratings,
we applied the non-parametric two-sided Wilcoxon signed rank
test [116] and report the corresponding p-value (p,,). To measure
the effect size, we used Cliff’s delta (§) [17]. Our interpretation of &
is based on the guidelines by Kitchenham et al. [55]. Moreover, we
report the confidence interval of § at a 95% confidence level (CIy).

The Wilcoxon signed rank test indicated that JR 4, is signif-
icantly higher than JRy,, for the experienced developers in S3
(pw = 0.0009), but the difference is not significant for the active
Java developers in S2 (p,, = 0.47). Cliff’s § shows only a negligible
effect for S2 (6 = 0.08, CIs = [-0.20,0.04]), but a small positive
effect for $3 (§ = 0.17, CI5 = [0.004, 0.33]), i.e., experienced devel-
opers tended to adjust their self-assessments to a higher rating after
we provided context. A possible interpretation of this result could
be found in the Dunning-Kruger effect [60], which is one form of the
illusory superiority bias [48] where individuals tend to overestimate
their abilities. One result of Kruger and Dunning is that participants
with a high skill-level underestimate their ability and performance
relative to their peers [60]. This may have happened in the sample
with experienced developers (S3) when they assessed their Java
expertise using the semantic differential scale. When we provided
context in form of the Dreyfus model, they adjusted their ratings
to a more adequate rating, whereas the less experienced developers
(52) stuck to their, possibly overestimated, ratings. We cannot con-
clude that the Dreyfus model in fact leads to more adequate ratings
for experienced developers, because we do not have the data to
assess the validity of their ratings. However, we can conclude that
the way we asked developers to assess their Java programming
expertise was influenced by the context we provided.

Experience and expertise: Neither developers’ experience
measured in years nor the self-assessed programming exper-
tise ratings yielded consistent results across all settings. One
direction for future work is to investigate and compare differ-
ent expertise rating scales to provide guidance for researchers
designing studies with expertise self-assessments.

Towards a Theory of Software Development Expertise

7 LIMITATIONS AND THREATS TO VALIDITY

Since we conducted mixed-methods research, we assess the limi-
tations and threats to validity of our study in terms of the typical
quantitative categories internal and external validity [51], but we
will also apply the qualitative evaluation criteria credibility, origi-
nality, resonance, and usefulness [13].

Internal validity: In our analysis of expertise self-assessments (see
Section 6.2), we cannot rule out that a confounding factor lead to the
higher self-assessments of experienced developers (S3). However,
although we used the same questionnaire for S2 and S3, the effect
was only significant and non-negligible for S3. Our goal was not
to be able to quantify the effect of context on developers’ self-
assessment, but to show that it exists to motivate future research
on this aspect.

External validity: The main limitation affecting external validity
is our focus on Java and on open source software development,
in particular on GH and SO users. Moreover, as one of three sam-
ples targeted experienced developers and only five participants
identified themselves as female, our results may be biased towards
experienced male developers. Nevertheless, we are confident that
our theory is also valid for other developer populations, because
of the abstract nature of its core concepts and their grounding in
related work. Moreover, although we contacted open source de-
velopers, many of them reported on their experiences working in
companies (see, e.g., the concepts work/task context).

Qualitative evaluation criteria: To support credibility of our find-
ings, we not only inductively built our theory from surveys with
335 software developers, but also deductively included results from
related work on expertise and expert performance. We constantly
compared the answers between all three samples and mapped
them to overarching concepts and categories. For the core concepts
general/task-specific knowledge and experience, and the connection
of individual differences, work context, behavior, and performance,
we observed theoretical saturation in the way that those concepts
were frequently named and the descriptions did not contradict the
relationships we modeled. However, as we only collected data from
three samples of developers, the concepts, and in particular the
categories we added in phase 3, have to be validated using more
data to achieve a higher level of theoretical saturation. In terms
of originality, we not only contribute a first conceptual theory of
SDExp, but also a research design for theory building that other
software engineering researchers can adapt and apply. Regarding
the resonance of our theory, the feedback, in particular from sam-
ples S2 and S3 with focused questions directly related to theory
concepts, was generally positive. Participants described their partic-
ipation as a “very informative experience” and a “nice opportunity
to reflect”. However, there was some negative feedback regarding
the Java focus, especially in sample S3. Participants were mainly
asking why we concentrated on Java, not questioning the general
decision to focus on one particular programming language for some
questions. To motivate the usefulness of our theory, we refer to Sec-
tion 9, which contains short summaries of our findings targeting
researchers, software developers, and their employers.

Other limitations: The qualitative analysis and theory-building
was mainly conducted by the first author and was then discussed

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

with the second author. We tried to mitigate possible biases intro-
duced by us as authors of the theory by embedding our initial GT
in related work on expertise and expert performance (see Section 4)
and then again collecting data to further refine the resulting con-
ceptual theory (see Section 5). However, when theorizing, there
will always be an “uncodifiable step” that relies on the imagination
of the researcher [61, 113].

8 RELATED WORK

Expertise research in software engineering mainly focused on
expert recommendation, utilizing information such as change his-
tory [53, 71, 78], usage history [66, 112], bug reports [3], or inter-
action data [34, 86]. Investigated aspects of software development
expertise (SDExp) include programming experience [95], age [81],
developer fluency [117], and desired attributes of software engi-
neers [63] and managers [54]. Moreover, similar to our study, Grazi-
otin et al. observed that vision and goal-setting are related to devel-
opers’ performance [40]. However, as mentioned above, up to now
there was no theory combining those individual aspects.

Beside the references mentioned in the description of our theory,
the psychological constructs personality, motivation, and men-
tal ability provide many links to theories and instruments from
the field of psychology. To assess developers’ personality, e.g., one
could employ the International Personality Item Pool (IPIP) [37], mea-
suring the big five personality traits. There have been many studies
investigating the personality of software developers [20]. Cruz et al.
conclude in their systematic mapping study that the evidence from
analyzed papers is conflicting, especially for the area of individual
performance. Thus, more research is needed to investigate the con-
nection between personality and expert performance. Our theory
can help to identify confounding factors affecting performance,
in particular the interplay between an individual’s mental abili-
ties, personality, motivation, and his/her general and task-specific
knowledge and experience. The connection between mental abili-
ties, personality, and domain knowledge in expertise development
has, for example, been described by Ackerman and Beier’s [1].

The concepts of communication and problem-solving skills
have been thoroughly described in psychology literature [45, 64, 87].
Researchers can use this knowledge when designing studies about
the influence of such skills on the formation of SDExp. The other
two general skills we included in our theory, CONTINUOUS LEARNING
and ASSESSING TRADE-OFFS, have also been described by Li et al. [63],
who identified continuously improving and effective decision-making
as critical attributes of great software engineers.

Very closely related to the concept of deliberate practice [29],
which we included in our theory, is the concept of self-directed
learning [73] that connects our work to educational research. Simi-
lar to our theory, motivation and self-monitoring are considered
to be important aspects of self-directed learning [73]. To capture
the motivation of developers one could adapt ideas from self-
determination theory [90] or McClelland’s theory of the big three
motives [69]. There also exist instruments like the Unified Motive
Scales (UMS) [92] to assess human motivation, which can be uti-
lized in studies. Beecham et al. [8] conducted a systematic literature
review of motivation in software engineering. While many studies
reported that software developers’ motivation differs from other

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

groups, the existing models diverge and “there is no clear under-
standing of [...] what motivates Software Engineers” Nevertheless,
the authors name “problem solving, working to benefit others and
technical challenge” as important job aspects that motivate devel-
opers. This is very similar to our categories WORK AS CHALLENGE
and HELPING OTHERS, which we assigned to the concept motiva-
tion in our theory. An area related to motivation is the (perceived)
productivity of individual developers [15, 75] or software devel-
opment teams [42, 89]. The results from existing studies in this
area can be adapted to assess the performance of developers for
monitoring, feedback, and self-reflection [76, 108]. Beside their
connection to existing software engineering research, those con-
cepts also connect our theory to two additional areas of psychology:
metacognition (“knowledge about one’s own knowledge [... and]
performance”) [32] and self-regulation [118].

To measure mental abilities, test like the WAIS-IV [115] or the
graphical mini-q test [7] can be employed. As motivated above,
the connection between aging and expertise [58], and in particu-
lar how a (perceived) age-related performance decline influences
individuals and how they compensate this decline, are important di-
rections for future research. Considering the phenomenon of global
population aging [65], the number of old software developers is
likely to increase in the next decades. With their experience and
knowledge, those developers are a valuable part of software de-
velopment teams. However, as our qualitative data suggests, they
may become unsatisfied with their jobs and may even drop out of
software development.

To assess the performance of individual software developers, re-
searchers can choose from various existing software metrics [33, 52].
Especially maintainability metrics [18] are of interest, because in
our study, maintainability was the most frequently named source
code property of experts. Tests about general programming knowl-
edge could be derived from literature about typical programming
interview questions [4, 72, 79]. To assess task-specific Java knowl-
edge, one could rely on commercially available tests like the exams
for Oracle’s Java certification. Britto et al.[10] report on their ex-
perience measuring learning results and the associated effect on
performance in a large-scale software project. Their results can
help measuring the concepts education and performance.

9 SUMMARY AND FUTURE WORK

In this paper, we presented a conceptual theory of software devel-
opment expertise (SDExp). The theory is grounded in the answers
of an online survey with 355 software developers and in existing lit-
erature on expertise and expert performance. Our theory describes
various properties of SDExp and factors fostering or hindering
its development. We classified our theory as a teleological process
theory that views “development as a repetitive sequence of goal
formulation, implementation, evaluation, and modification of goals
based on what was learned” [110]. Our task-specific view of SDExp,
together with the concept of deliberate practice and the related
feedback cycle, fits this framing, assuming that developers’ goal is
to become experts in certain software development tasks.

We reached a diverse set of experienced and less experienced
developers. However, due to the focus on Java and open source
software, future work must investigate the applicability of our

Sebastian Baltes and Stephan Diehl

results to other developer populations. We plan to add more results
from existing studies in software engineering and psychology to
our theory and to conduct own studies based on our theory. In
particular, we want to broaden the scope to include more tasks not
directly related to programming. Nevertheless, the theory is already
useful for researchers, software developers, and their employers. In
the following, we will briefly summarize our findings with a focus
on those target audiences.

Researchers: Researchers can use our methodological findings
about (self-assessed) expertise and experience (see Section 6) when
designing studies involving self-assessments. If researchers have a
clear understanding what distinguishes novices and experts in their
study setting, they should provide this context [93] when asking for
self-assessed expertise and later report it together with their results.
We motivated why we did not describe expertise development in
discrete steps (see Section 4), but a direction for future work could
be to at least develop a standardized description of novice and expert
for certain tasks, which could then be used in semantic differential
scales. To design concrete experiments measuring certain aspects
of SDExp, one needs to operationalize the conceptual theory [44].
We already linked certain concepts to measurement instruments
such as UMS (motivation), WAIS-IV (mental abilities), or IPIP (per-
sonality). We also mentioned static analysis tools to measure code
quality and simple productivity measures such as commit frequency
and number of issues closed. This enables researchers to design
experiments, but also to re-evaluate results from previous exper-
iments. There are, e.g., no coherent results about the connection
of individual differences and programming performance yet. One
could review studies on developers’ motivation [8] and personal-
ity [20] in the context of our theory, to derive a research design for
analyzing the interplay of individual differences and SDExp.

Developers: Software developers can use our results to see which
properties are distinctive for experts in their field, and which be-
haviors may lead to becoming a better software developer. For
example, the concept of deliberate practice, and in particular hav-
ing challenging goals, a supportive work environment, and getting
feedback from peers are important factors. For “senior” developers,
our results provide suggestions for being a good mentor. Mentors
should know that they are considered to be an important source for
feedback and motivation, and that being patient and being open-
minded are desired characteristics. We also provide first results on
the consequences of age-related performance decline, which is an
important direction for future work.

Employers: Employers can learn what typical reasons for demoti-
vation among their employees are, and how they can build a work
environment supporting the self-improvement of their staff. Beside
obvious strategies such as offering training sessions or paying for
conference visits, our results suggest that employers should think
carefully about how information is shared between their developers
and also between the development team and other departments of
the company. Facilitating meetings that explicitly target informa-
tion exchange and learning new skills should be a priority of every
company that cares about the development of their employees. Fi-
nally, employers should make sure to have a good mix of continuity
and change in their software development process, because non-
challenging work, often caused by tasks becoming routine, is an
important demotivating factor for software developers.

Towards a Theory of Software Development Expertise

ACKNOWLEDGMENTS

We thank the survey participants, Bernhard Baltes-G6tz, Daniel
Graziotin, and the anonymous reviewers for their valuable feedback.

REFERENCES

(]

[2
[3]

[4]

=
2

—
_

=
Ao

=
=

N
2

[
—

[22

[23

[24

[25

[26]

[28

Phillip L. Ackerman and Margaret E. Beier. 2006. Methods for Studying the
Structure of Expertise: Psychometric Approaches. In The Cambridge Handbook
of Expertise and Expert Performance. 147-165.

American Psychological Association. 2015. APA Dictionary of Psychology.
John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who Should Fix This Bug?.
In 28th International Conference on Software Engineering (ICSE 2006). 361-370.
Adnan Aziz, Tsung-Hsien Lee, and Amit Prakash. 2012. Elements of Programming
Interviews. CreateSpace Independent Publishing Platform.

Sebastian Baltes and Stephan Diehl. 2016. Worse Than Spam: Issues In Sampling
Software Developers. In 10th International Symposium on Empirical Software
Engineering and Measurement (ESEM 2016). 52:1-52:6.

Sebastian Baltes and Stephan Diehl. 2018. Towards a Theory of Software
Development Expertise — Supplementary Material. (2018). https://doi.org/10.
5281/zenodo.1299798

Tanja Gabriele Baudson and Franzis Preckel. 2016. mini-q: Intelligenzscreening
in drei Minuten. Diagnostica 62, 3 (2016), 182-197.

Sarah Beecham, Nathan Baddoo, Tracy Hall, Hugh Robinson, and Helen Sharp.
2008. Motivation in Software Engineering: A systematic literature review.
Information and Software Technology 50, 9 (2008), 860-878.

Gunnar R. Bergersen, Dag I. K. Sjoberg, and Tore Dyba. 2014. Construction and
Validation of an Instrument for Measuring Programming Skill. IEEE Transactions
on Software Engineering 40, 12 (2014), 1163-1184.

Ricardo Britto, Darja Smite, and Lars-Ola Damm. 2016. Experiences from
Measuring Learning and Performance in Large-Scale Distributed Software De-
velopment. In 10th International Symposium on Empirical Software Engineering
and Measurement (ESEM 2016). 1-6.

Guillermo Campitelli and Fernand Gobet. 2011. Deliberate Practice. Current
Directions in Psychological Science 20, 5 (2011), 280-285.

Pierre Carbonnelle. 2016. PYPL PopularitY of Programming Language: March
2016. (2016). http://pypl.github.io/PYPL.html

Kathy Charmaz. 2014. Constructing grounded theory (2nd ed.). Sage.
Michelene T. H. Chi. 2006. Two Approaches to the Study of Expert’s Character-
istics. In The Cambridge Handbook of Expertise and Expert Performance.

Earl Chrysler. 1978. Some Basic Determinants of Computer Programming
Productivity. Communications of the ACM 21, 6 (1978), 472-483.

K. Alec Chrystal and Paul D. Mizen. 2003. Goodhart’s law: Its origins, meaning
and implications for monetary policy. Central banking, monetary theory and
practice: Essays in honour of Charles Goodhart 1 (2003), 221-243.

Norman Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological bulletin 114, 3 (1993), 494.

D. Coleman, D. Ash, B. Lowther, and P. Oman. 1994. Using metrics to evaluate
software system maintainability. Computer 27, 8 (1994), 44-49.

Juliet Corbin and Anselm Strauss. 2008. Basics of qualitative research (3rd ed.).
SAGE Publications.

Shirley Cruz, Fabio Q. B. da Silva, and Luiz Fernando Capretz. 2015. Forty
years of research on personality in software engineering: A mapping study.
Computers in Human Behavior 46 (2015), 94-113.

Bill Curtis. 1984. Fifteen years of psychology in software engineering: Individual
differences and cognitive science. In 7th International Conference on Software
Engineering (ICSE 1984).

Oscar Dieste, Alejandrina M. Aranda, Fernando Uyaguari, Burak Turhan, Ayse
Tosun, Davide Fucci, Markku Oivo, and Natalia Juristo. 2017. Empirical evalua-
tion of the effects of experience on code quality and programmer productivity:
An exploratory study. Empirical Software Engineering 22, 5 (2017), 2457-2542.
Stuart E. Dreyfus. 2004. The five-stage model of adult skill acquisition. Bulletin
of science, technology & society 24, 3 (2004), 177-181.

Stuart E. Dreyfus and Hubert L. Dreyfus. 1980. A five-stage model of the mental
activities involved in directed skill acquisition. University of California, Berkeley
ORC 80-2 (1980), 1-22.

Alastair Dunsmore and Marc Roper. 2000. A comparative evaluation of pro-
gram comprehension measures. Department of Computer Science, University of
Strathclyde EFoCS-35-2000 (2000), 1-7.

K. Anders Ericsson. 2006. An Introduction to Cambridge Handbook of Expertise
and Expert Performance: Its Development, Organization, and Content. In The
Cambridge Handbook of Expertise and Expert Performance. 3—-19.

K. Anders Ericsson. 2006. The Influence of Experience and Deliberate Practice on
the Development of Superior Expert Performance. In The Cambridge Handbook
of Expertise and Expert Performance. 683-703.

K. Anders Ericsson, Neil Charness, Paul J. Feltovich, and Robert R. Hoffman
(Eds.). 2006. The Cambridge Handbook of Expertise and Expert Performance.

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

[29]

[30]

[31]

[32

[33]

[34

[35

[36

[37

[38

[39

[40

[41

[42]

[43

[44]

[45

[46]

[47

[48]

[49

[50

(51

[52

[53

[54

[55

[56

[57

K. Anders Ericsson, Ralf T. Krampe, and Clemens Tesch-Rémer. 1993. The role
of deliberate practice in the acquisition of expert performance. Psychological
review 100, 3 (1993), 363.

K. Anders Ericsson, Michael J. Prietula, and Edward T. Cokely. 2007. The making
of an expert. Harvard business review 85, 7/8 (2007), 114.

K. Anders Ericsson and Jacqui Smith. 1991. Prospects and limits of the empirical
study of expertise: An introduction. In Toward a general theory of expertise:
Prospects and limits. Vol. 344. 1-38.

Paul J. Feltovich, Michael J. Prietula, and K. Anders Ericsson. 2006. Studies
of Expertise from Psychological Perspectives. In The Cambridge Handbook of
Expertise and Expert Performance. 41-67.

Norman Fenton and James Bieman. 2015. Software Metrics: A Rigorous and
Practical Approach. CRC Press.

Thomas Fritz, Gail C. Murphy, and Emily Hill. 2007. Does a Programmer’s
Activity Indicate Knowledge of Code?. In 6th European Software Engineering
Conference and ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (ESEC/FSE 2007).

Ron Garland. 1991. The Mid-Point on a Rating Scale: Is it Desirable? Marketing
Bulletin 2, Research Note 3 (1991), 66—70.

Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine Transaction.

Lewis R. Goldberg. 1999. A broad-bandwidth, public domain, personality inven-
tory measuring the lower-level facets of several five-factor models. Personality
psychology in Europe 7, 1 (1999), 7-28.

Charles A. E. Goodhart. 1984. Monetary Theory and Practice: The UK Experience.
Macmillan Press.

Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In 10th Interna-
tional Working Conference on Mining Software Repositories (MSR 2013). IEEE.
Daniel Graziotin, Xiaofeng Wang, and Pekka Abrahamsson. 2015. How do you
feel, developer? An explanatory theory of the impact of affects on programming
performance. Peer] Computer Science 1 (2015), e18.

Shirley Gregor. 2006. The nature of theory in information systems. MIS quarterly
30, 3 (2006), 611-642.

Lucas Gren. 2017. The Links Between Agile Practices, Interpersonal Conflict,
and Perceived Productivity. In 21st International Conference on Evaluation and
Assessment in Software Engineering (EASE 2017). 292-297.

David Z. Hambrick and Elizabeth J. Meinz. 2011. Limits on the Predictive Power
of Domain-Specific Experience and Knowledge in Skilled Performance. Current
Directions in Psychological Science 20, 5 (2011), 275-279.

Jo E. Hannay, Dag L. K. Sjoberg, and Tore Dyba. 2007. A systematic review of
theory use in software engineering experiments. IEEE Transactions on Software
Engineering 33, 2 (2007), 87-107.

Owen Hargie (Ed.). 2006. The Handbook of Communication Skills (3 ed.). Rout-
ledge.

James D. Herbsleb and Audris Mockus. 2003. Formulation and preliminary test
of an empirical theory of coordination in software engineering. In 4th European
Software Engineering Conference and ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE 2003). 138-137.

Dennis E. Hinkle, William Wiersma, and Stephen G. Jurs. 1979. Applied statistics
for the behavioral sciences. Rand McNally College Publishing.

Vera Hoorens. 1993. Self-enhancement and superiority biases in social compari-
son. European review of social psychology 4, 1 (1993), 113-139.

Andy Hunt. 2008. Pragmatic Thinking and Learning: Refactor Your Wetware.
Pragmatic bookshelf.

Earl Hunt. 2006. Expertise, Talent, and Social Encouragement. In The Cambridge
Handbook of Expertise and Expert Performance. 31-38.

R. Burke Johnson, Anthony J. Onwuegbuzie, and Lisa A. Turner. 2007. Toward
a definition of mixed methods research. Journal of mixed methods research 1, 2
(2007), 112-133.

Capers Jones. 2008. Applied Software Measurement: Global Analysis of Productiv-
ity and Quality (3 ed.). McGraw-Hill Education.

Huzefa H. Kagdi, Maen Hammad, and Jonathan I. Maletic. 2008. Who can help
me with this source code change?. In 24th IEEE International Conference on
Software Maintenance (ICSM 2008). 157-166.

Eirini Kalliamvakou, Christian Bird, Thomas Zimmermann, Andrew Begel,
Robert DeLine, and Daniel M. German. 2017. What Makes a Great Manager of
Software Engineers? IEEE Transactions on Software Engineering Early Access
Articles, 1 (2017), 1.

Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl Brere-
ton, Stuart M. Charters, Shirley Gibbs, and Amnart Pohthong. 2017. Robust
Statistical Methods for Empirical Software Engineering. Empirical Software
Engineering 22, 2 (2017), 579-630.

Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W.
Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. 2002. Prelimi-
nary guidelines for empirical research in software engineering. IEEE Transactions
on Software Engineering 28, 8 (2002), 721-734.

Andrew J. Ko and Bob Uttl. 2003. Individual differences in program compre-
hension strategies in unfamiliar programming systems. In 11th International

https://doi.org/10.5281/zenodo.1299798
https://doi.org/10.5281/zenodo.1299798
http://pypl.github.io/PYPL.html

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

(58]

[59

(60]

(61

(62

(63

[64]

[65

[66]

[67]

[77

(78

[79]

(80]

oo
=

(82

(83

(84

[85

(86

(88

[89

[90

Workshop on Program Comprehension (IWPC 2003). 175-184.

Ralf Th. Krampe and Neil Charness. 2006. Aging and Expertise. In The Cambridge
Handbook of Expertise and Expert Performance. 723-742.

Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. 2012. Technical debt: From
metaphor to theory and practice. IEEE Software 6 (2012), 18-21.

Justin Kruger and David Dunning. 1999. Unskilled and unaware of it: How diffi-
culties in recognizing one’s own incompetence lead to inflated self-assessments.
Journal of Personality and Social Psychology 77, 6 (1999), 1121.

Ann Langley. 1999. Strategies for theorizing from process data. Academy of
management review 24, 4 (1999), 691-710.

Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental
models: A study of developer work habits. In 28th International Conference on
Software Engineering (ICSE 2006). 492-501.

Paul Luo Li, Andrew J. Ko, and Jiamin Zhu. 2015. What Makes A Great Software
Engineer?. In 37th International Conference on Software Engineering (ICSE 2015).
Edwin A. Locke, Gary P. Latham, Ken J. Smith, and Robert E. Wood. 1990. A
Theory of Goal Setting & Task Performance (1 ed.). Prentice Hall.

Wolfgang Lutz, Warren Sanderson, and Sergei Scherbov. 2008. The coming
acceleration of global population ageing. Nature 451, 7179 (2008), 716-719.
David Ma, David Schuler, Thomas Zimmermann, and Jonathan Sillito. 2009.
Expert Recommendation with Usage Expertise. In 25th IEEE International Con-
ference on Software Maintenance (ICSM 2009). 535-538.

M. Lynne Markus and Daniel Robey. 1988. Information technology and organi-
zational change: Causal structure in theory and research. Management science
34, 5 (1988), 583-598.

Antoinette McCallin. 2003. Grappling with the literature in a grounded theory
study. Contemporary Nurse 15, 1-2 (2003), 61-69.

David C. McClelland. 1987. Human motivation. Cambridge University Press.
Robert R. McCrae and Oliver P. John. 1992. An Introduction to the Five-Factor
Model and Its Applications. Journal of Personality 60, 2 (1992), 175-215.

David W. McDonald and Mark S. Ackerman. 2000. Expertise recommender: A
flexible recommendation system and architecture. In Proceeding on the 2000 ACM
Conference on Computer Supported Cooperative Work (CSCW 2000). 231-240.
Gayle Laakmann McDowell. 2014. Cracking the Coding Interview (5th ed.).
Sharan B. Merriam, Rosemary S. Caffarella, and Lisa M. Baumgartner. 2007.
Learning in Adulthood: A Comprehensive Guide (3 ed.). John Wiley & Sons.
Merriam-Webster.com. 2018. expert. (2018). http://www.merriam-webster.
com/dictionary/expert

Andre N. Meyer, Laura E. Barton, Gail C. Murphy, Thomas Zimmermann, and
Thomas Fritz. 2017. The Work Life of Developers: Activities, Switches and
Perceived Productivity. IEEE Transactions on Software Engineering 43, 12 (2017).
Andre N. Meyer, Gail C. Murphy, Thomas Zimmermann, and Thomas Fritz. 2017.
Design Recommendations for Self-Monitoring in the Workplace: Studies in
Software Development. Proceedings of the ACM on Human-Computer Interaction
1, CSCW (2017).

Harald A. Mieg. 2006. Social and Sociological Factors in the Development of
Expertise. In The Cambridge Handbook of Expertise and Expert Performance.
Audris Mockus and James D. Herbsleb. 2002. Expertise browser: A quantitative
approach to identifying expertise. In 24th International Conference on Software
Engineering (ICSE 2002). 503-512.

John Mongan, Eric Gigure, and Noah Kindler. 2013. Programming interviews
exposed (3rd ed.). John Wiley & Sons.

Guy Moors. 2008. Exploring the effect of a middle response category on response
style in attitude measurement. Quality & quantity 42, 6 (2008), 779-794.
Patrick Morrison and Emerson Murphy-Hill. 2013. Is programming knowledge
related to age? An exploration of Stack Overflow. In 10th International Working
Conference on Mining Software Repositories (MSR 2013). 69-72.

Janice M. Morse. 2007. Sampling in grounded theory. In The SAGE Handbook of
Grounded Theory. 229-244.

Stephan J. Motowidlo, Walter C. Borman, and Mark J. Schmit. 1997. A Theory of
Individual Differences in Task and Contextual Performance. Human Performance
10, 2 (1997), 71-83.

Adolfo Pena. 2010. The Dreyfus model of clinical problem-solving skills acqui-
sition: A critical perspective. Medical Education Online 15 (2010), 1-11.

Paul Ralph. 2018. Toward Methodological Guidelines for Process Theories and
Taxonomies in Software Engineering. IEEE TSE Early Access (2018).

Romain Robbes and David Rothlisberger. 2013. Using Developer Interaction
Data to Compare Expertise Metrics. In 10th International Working Conference
on Mining Software Repositories (MSR 2013). 297-300.

S. Tan Robertson. 2016. Problem Solving: Perspectives from Cognition and Neuro-
science (2 ed.). Routledge.

Pierre N. Robillard. 1999. The Role of Knowledge in Software Development.
Communications of the ACM 42, 1 (1999), 87-92.

D. Rodriguez, M. A. Sicilia, E. Garcia, and R. Harrison. 2012. Empirical findings
on team size and productivity in software development. Journal of Systems and
Software 85, 3 (2012), 562-570.

Richard M. Ryan and Edward L. Deci. 2000. Self-determination theory and
the facilitation of intrinsic motivation, social development, and well-being.

[o1
[92

[93

[94

[95

[96

[97

[98]

[99]

[100]

[101

[102

[103

[104

[105

[106

[107]

[108

[109

[110]

[111

[112

[113]

[114

[115

[116

[117

[118

Sebastian Baltes and Stephan Diehl

American Psychologist 55, 1 (2000), 68-78.

Johnny Saldana. 2015. The coding manual for qualitative researchers. Sage.
Felix D. Schonbrodt and Friederike X. R. Gerstenberg. 2012. An IRT analysis
of motive questionnaires: The unified motive scales. Journal of Research in
Personality 46, 6 (2012), 725-742.

Norbert Schwarz and Daphna Oyserman. 2001. Asking questions about behavior:
Cognition, communication, and questionnaire construction. American Journal
of Evaluation 22, 2 (2001), 127-160.

Ben Shneiderman and Richard Mayer. 1979. Syntactic/Semantic Interactions in
Programmer Behavior: A Model and Experimental Results. International Journal
of Computer and Information Sciences 8, 3 (1979), 219-238.

Janet Siegmund, Christian Kaestner, Joerg Liebig, Sven Apel, and Stefan Ha-
nenberg. 2014. Measuring and modeling programming experience. Empirical
Software Engineering 19, 5 (2014), 1299-1334.

Janice Singer, Timothy C. Lethbridge, Norman G. Vinson, and Nicolas Anquetil.
1997. An examination of software engineering work practices. In 1997 Conference
of the Centre for Advanced Studies on Collaborative Research (CASCON 1997).
DagI. K. Sjoberg, Tore Dyba, Bente C. D. Anda, and Jo E. Hannay. 2008. Building
theories in software engineering. In Guide to Advanced Empirical Software
Engineering. 312-336.

Sabine Sonnentag. 1995. Excellent software professionals: Experience, work
activities, and perception by peers. Behaviour & Information Technology 14, 5
(1995), 289-299.

Sabine Sonnentag. 1998. Expertise in professional software design: A process
study. Journal of Applied Psychology 83, 5 (1998), 703-715.

Sabine Sonnentag, Cornelia Niessen, and Judith Volmer. 2006. Expertise in Soft-
ware Design. In The Cambridge Handbook of Expertise and Expert Performance.
Lauren A. Sosniak. 2006. Retrospective Interviews in the Study of Expertise
and Expert Performance. In The Cambridge Handbook of Expertise and Expert
Performance. 287-301.

Stack Exchange Inc. 2015. Stack Exchange Data Dump: August 18, 2015. (2015).
https://archive.org/details/stackexchange/

Stack Exchange Inc. 2016. 2015 Developer Survey. (2016). http://stackoverflow.
com/research/developer-survey-2015

Abbas Tashakkori and Charles Teddlie. 1998. Mixed methodology: Combining
qualitative and quantitative approaches. Sage.

Robert Thornberg. 2012. Informed grounded theory. Scandinavian Journal of
Educational Research 56, 3 (2012), 243-259.

TIOBE software BV. 2016. TIOBE Index: March 2016. (2016). http://www.tiobe.
com/tiobe_index

Dennis Tourish and Owen Hargie. 2003. Motivating critical upward commu-
nication: A key challenge for management decision making. In Key Issues in
Organizational Communication. Routledge, 188-204.

Christoph Treude, Fernando Figueira Filho, and Uira Kulesza. 2015. Summariz-
ing and measuring development activity. In 10th European Software Engineering
Conference and ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (ESEC/FSE 2015). 625-636.

Andrew H. van de Ven. 1989. Nothing is quite so practical as a good theory.
Academy of management review 14, 4 (1989), 486—489.

Andrew H. van de Ven and Marshall Scott Poole. 1995. Explaining development
and change in organizations. Academy of management review 20, 3 (1995).
Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. 2013. StackOver-
flow and GitHub: Associations between Software Development and Crowd-
sourced Knowledge. In 2013 International Conference on Social Computing (So-
cialCom 2013). 188-195.

Adriana Santarosa Vivacqua and Henry Lieberman. 2000. Agents to assist in
finding help. In 2000 Conference on Human factors in computing systems (CHI
2000). 65-72.

Karl E. Weick. 1989. Theory Construction as Disciplined Imagination. Academy
of management review 14, 4 (1989), 516-531.

Robert W. Weisberg. 2006. Modes of Expertise in Creative Thinking: Evidence
from Case Studies. In The Cambridge Handbook of Expertise and Expert Perfor-
mance. 761-787.

Lawrence G. Weiss, Donald H. Saklofske, Diane Coalson, and Susan Engi Raiford.
2010. WAIS-IV clinical use and interpretation: Scientist-practitioner perspectives.
Academic Press.

Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics
1, 6 (1945), 80-83.

Minghui Zhou and Audris Mockus. 2010. Developer Fluency: Achieving True
Mastery in Software Projects. In 18th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2010). 137-146.

Barry J. Zimmerman. 2006. Development and Adaption of Expertise: The Role of
Self-Regulatory Processes and Beliefs. In The Cambridge Handbook of Expertise
and Expert Performance. 705-722.

http://www.merriam-webster.com/dictionary/expert
http://www.merriam-webster.com/dictionary/expert
https://archive.org/details/stackexchange/
http://stackoverflow.com/research/developer-survey-2015
http://stackoverflow.com/research/developer-survey-2015
http://www.tiobe.com/tiobe_index
http://www.tiobe.com/tiobe_index

	Abstract
	1 Introduction
	2 Research Design
	3 Phase 1: Grounded Theory
	3.1 Survey Design and Sampling
	3.2 Terminology
	3.3 Concepts
	3.4 Relationships

	4 Phase 2: Preliminary Conceptual Theory
	4.1 Concepts
	4.2 Relationships

	5 Phase 3: Revised Conceptual Theory
	5.1 Survey Design
	5.2 Sampling
	5.3 Concepts
	5.4 Relationships

	6 Experience and Expertise
	6.1 Programming Experience vs. Expertise
	6.2 Validity of Expertise Self-assessments

	7 Limitations and Threats to Validity
	8 Related Work
	9 Summary and Future Work
	Acknowledgments
	References

