
An Annotated Dataset of Stack Overflow Post Edits
Sebastian Baltes

sebastian.baltes@adelaide.edu.au
University of Adelaide

Adelaide, South Australia, Australia

Markus Wagner
markus.wagner@adelaide.edu.au

University of Adelaide
Adelaide, South Australia, Australia

ABSTRACT
To improve software engineering, software repositories have been
mined for code snippets and bug fixes. Typically, this mining takes
place at the level of files or commits. To be able to dig deeper and
to extract insights at a higher resolution, we hereby present an
annotated dataset that contains over 7 million edits of code and text
on Stack Overflow. Our preliminary study indicates that these edits
might be a treasure trove for mining information about fine-grained
patches, e.g., for the optimisation of non-functional properties.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering; Software maintenance tools.

KEYWORDS
Software documentation, software evolution, patches, mining soft-
ware repositories, stack overflow
ACM Reference Format:
Sebastian Baltes and Markus Wagner. 2020. An Annotated Dataset of Stack
Overflow Post Edits. In Proceedings of . ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 MOTIVATION
Data-Driven Search-Based Software Engineering (DSE) [9] com-
bines insights fromMining Software Repositories (MSR) and Search-
based Software Engineering (SBSE). While MSR formulates soft-
ware engineering problems as data mining problems, SBSE reformu-
lates SE problems as optimisation problems and use meta-heuristic
algorithms to solve them. Both MSR and SBSE share the common
goal of providing insights to improve software engineering. In this
present paper, we suggest to improve software engineering – in
particular the search for code and text patches – by mining the edit
histories of Stack Overflow posts.

We are, of course, not the first to propose to mine corpora for
patches. In particular in the field of automated program repair [3],
this has been a popular approach. For example, development histo-
ries of Eclipse JDT have been mined to find bug-fixing patches [4],
and so have been GitHub projects [6, 7], but again for fixing bugs.
Moving on from bug fixing to the optimisation of non-functional
properties, Petke [10] suggested in 2017:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, ,
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

“[...] to mine changes made by software developers
[...] with particular focus on improvement of the soft-
ware property of interest, such as runtime efficiency.
The results can then be used to devise new mutation
operators in the form of templates. [...]”

Interestingly, we are not aware of any work towards this, and one
reason for this might be the scarcity of data. Having said this, there
has been the work of Moura et al. [8], who focused on mining
energy-saving commits from GitHub that “had the explicit inten-
tion of saving energy”. They manually interpreted 290 commits
and presented among other two code transformations for very spe-
cialised cases that might be translatable into patches for automatic
search. While said article has been cited 28 times at the time of
writing, none of the citing works and none of the other works that
we are aware of had a broader focus on non-functional properties
in general.

With this article, we present a dataset of annotated Stack Over-
flow post edits for future extraction of patches.We are of the opinion
that the edits of Stack Overflow posts are by nature more fine-
grained than, e.g., commits in Github repositories, and hence they
are more amenable to the extraction of patches that can result in
new mutation operators – we would go as far to saying that this
is because Stack Overflow post edits are less formal (due to the
forum-like style of the platform) than a software repository com-
mit where each commit is, e.g., expected to fix a bug or to extend
functionality.1

Before we can start to extract patches, we first need to set the
expectations by characterising the dataset. As we have a particular
interest in code-optimisation, e.g., for the purpose of genetic im-
provement of software [5, 11], this greatly influences our research
questions:

(1) RQ1: Which aspects do Stack Overflow users mention in
their edit comments?

(2) RQ2: Which non-functional properties do users reference
in edit comments?

2 STACK OVERFLOW POST EDITS
To derive Stack Overflow code edits, we utilised the SOTorrent
dataset that we developed and maintain [1]. Based on version 2020-
01-24 of the dataset we retrieved all 7,459,778 post edits where the
user provided an (optional) description of the edit. Those edits,
which are not limited to a particular programming language, are
the foundation of our dataset [2]. Of all edits, 1,305,323 (17.5%)
modified only a code block, 4,792,777 (64.2%) only a text block, and
1,361,678 (18.3%) both text and code blocks of a particular Stack
Overflow post – Figure 1 shows an example of a typical post.
1As anecdotal evidence, we point at the two discussions https://softwareengineering.
stackexchange.com/q/74764/ and https://stackoverflow.com/q/107264 which have been
viewed over 70k at the time of writing; accessed on 14 April 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://softwareengineering.stackexchange.com/q/74764/
https://softwareengineering.stackexchange.com/q/74764/
https://stackoverflow.com/q/107264

, , Baltes and Wagner

Figure 1: Example of a StackOverflowpost that contains text
and code blocks and that has been edited after its initial pub-
lication. Source: https://stackoverflow.com/a/23480549, ac-
cessed on 17 April 2020.

In a next step, we normalised the edit messages by converting all
characters to lower case and by replacing all whitespace sequences
with a single space character. This yielded 3,291,268 unique edit
messages. We then ranked the edit messages according to their
frequency. Starting with the most frequent messages, we manu-
ally extracted characteristic keywords to build regular expressions
matching similar messages. We stopped the manual analysis as
soon as we were able to cluster all messages with at least 1,000 oc-
currences. After this process, we were able to assign edit messages
to 25 categories using customised regular expressions. Thirteen
categories were related to actions that the user performed (adding,
updating, deleting, fixing, improving, clarifying, simplifying, explain-
ing, editing, copy-editing, active reading, refactoring), eleven were
nouns related to the target of the edit (formatting, typo, grammar,
spelling, code, bug, link, image, example, syntax, solution, tag). One
category was more on a meta-level and captures sarcasm in edit
messages. To provide an example, we present the final regular ex-
pression that we used to match edits adding a certain information:
.*\\b((add|expand|more|extend)[a-z0-9_-]*).*

Please note that one edit can belong to more than one of these edit
categories. Overall, we were able at assign 6,704,541 of the 7,459,778
edits (89.9%) to at least one category (see Figure 2). We provide the
our retrieval and analysis scripts as part of our dataset [1].

Figure 2 shows the results of the above-mentioned annotation
process, thus answering RQ1. Most post edits are concerned with
formatting or additions. Many edits referred to fixing and to code,
which indicates that our dataset is indeed suitable for mining
patches. While the term bug was less frequently mentioned, it
still occurred in 24,775 edit messages.

In the following, to explore the potential for patch-extraction, we
focus on post edits that only edited code blocks, because this allows
us to unambiguously link the edit message to the code edit. Of the
1,305,323 edits that only modified code blocks, 933,340 (71.5%) were
assigned to at least one of the 25 categories. Figure 3 shows the

Fo
rm
at
tin
g

A
dd
in
g

Fi
xi
ng

C
od
e

Im
pr
ov
in
g

G
ra
m
m
ar

E
di
tin
g

D
el
et
in
g

U
pd
at
in
g

S
pe
lli
ng

C
op
yE
di
tin
g

Li
nk

Ty
po

C
la
rif
yi
ng

E
xa
m
pl
e

E
xp
la
in
in
g

Im
ag
e

S
ol
ut
io
n

S
yn
ta
x

B
ug

S
im
pl
ify
in
g

A
ct
iv
eR
ea
di
ng Ta
g

R
ef
ac
to
rin
g

S
ar
ca
sm

0

500000

1000000

1500000

2000000

Figure 2: Number of edits assigned to the 25 categories we
iteratively derived (n=6,704,541).

pair count
formatting, code 152,721

improving, formatting 98,339
fixing, code 76,026

fixing, formatting 65,544
adding, code 50,795
fixing, typo 32,711

improving, code 31,463
editing, code 28,844
updating, code 24,910
deleting, code 20,106

Table 1: Top 10 pairs of tags (pairs ordered only for presen-
tation purposes).

corresponding distribution. As we can see, about one third of these
edits are about formatting and code, but fixing and adding were
also frequently mentioned. Overall, the edits that are interesting
for us are the hundreds of thousands of edits that are concerned
with fixing, editing, updating, or improving.

Fo
rm
at
tin
g

C
od
e

Fi
xi
ng

A
dd
in
g

Im
pr
ov
in
g

E
di
tin
g

U
pd
at
in
g

D
el
et
in
g

Ty
po

E
xa
m
pl
e

C
op
yE
di
tin
g

S
yn
ta
x

C
la
rif
yi
ng
B
ug

S
pe
lli
ng

E
xp
la
in
in
g

S
ol
ut
io
n

G
ra
m
m
ar

S
im
pl
ify
in
g

Li
nk

Im
ag
e

R
ef
ac
to
rin
g

Ta
g

A
ct
iv
eR
ea
di
ng

S
ar
ca
sm

0
50000
100000
150000
200000
250000
300000
350000

Figure 3: Number of code edits assigned to the 25 categories
we iteratively derived (n= 933,340).

Next, we dig a little deeper. In Table 1, we list the most frequent
pairs of tags (of edits that were assigned to at least two categories).
While a large proportion of the post edits is about the formatting if
code, over 230,000 edits possibly target the improvement of a code
aspect of a post, i.e., by fixing, adding, improving, editing, updating,
or deleting code.

https://stackoverflow.com/a/23480549

An Annotated Dataset of Stack Overflow Post Edits , ,

property count
Performance 2,658

Size 2,284
Memory 1,084
Energy 10

Table 2: Number of code edits where the usermentioned one
of the four non-functional properties we have considered
(n=7,024).

Finally, we focus on edits targeting non-functional properties,
as this appears to be an area that is currently under-explored in
the literature. While non-functional properties were not among
the most frequently mentioned terms that formed the 25 categories
we used to tag edits, we want to show that our dataset never-
theless contains edits related to such properties. We derived four
categories capturing non-functional properties based on our own
judgement and information taken from the Wikipedia page on
non-functional requirements.2 We again built custom regular ex-
pressions to match edits related to these categories (see scripts
attached to our dataset [1]). Table 2 shows the results of applying
the regular expressions to the edit messages of all code-only edits,
thus answering RQ2. We found a few thousand edits that appear
to target non-functional properties such as performance and mem-
ory. Interestingly, the small number of edits targeting energy is in
line with the small number of commits that the aforementioned
research [8] has been able to find.

3 EXAMPLES
Our dataset can either be downloaded from Zenodo [1] as a CSV
file or accessed via Google BigQuery.3 The table PostEdits, which
we provide as part of our dataset, gives researchers access to all
7,459,778 post edits extracted from the SOTorrent dataset, identified
by their PostHistoryId. We further provide the edit messages and
binary flags for the categories mentioned throughout this paper,
which can be used to filter the edits. The table can be joined with
table PostBlockVersion of the SOTorrent dataset to retrieve the
content of the modified text and code blocks before and after the
edits. A corresponding query is attached to our dataset [1].

As a first investigation to explore the potential of our dataset, we
have manually explored the subset of the code-block edits that we
had tagged as being performance-related. For this proof-of-concept,
a total of 15 minutes was spent on the exploration of the edits and
on the assessment of the respective Stack Overflow posts. Among
others, we have found the following edits:4

(1) “using john saunders tip for more performance” (23481309):
the edit replaced a String with a StringBuilder (see Figure 1).

(2) “added debounce to improve performance when app scales”
(44000037): the edit added a JavaScript debounce function.

2https://en.wikipedia.org/w/index.php?title=Non-functional_requirement&oldid=
947189406, accessed on 13 April 2020
3https://bigquery.cloud.google.com/table/sotorrent-org:2020_01_24_edits.PostEdits
4structure: edit comment from the post editor (post ID): our interpretation

(3) “evaluating x 0 first solves for type errors and gives better
performance than if” (19400435): the edit updated an if-
statement – interestingly, there is a brief discussion on the
performance attached to this post.

(4) “some small performance improvements always a good idea
to have a fast primality test” (8539774): the edit added a few
hard-coded scenarios for a particular problem.

(5) “Improved performance, by getting [...] outside the loop”
(11535593): the edit lifted code outside of a loop, which is an
approach that is commonly taught in undergraduate courses.

4 OUTLOOK
The particular value of our dataset is that the post edits are most
likely much smaller in scope and much more fine-grained than,
e.g., commits in project repositories. With his hypothesis in mind,
it might be possible to reveal insights on software engineering in
practice at a higher resolution. Moreover, our preliminary study
indicates that the Stack Overflow edits might be a treasure trove
for manually mining information about fine-grained code patches,
e.g., for the optimisation of non-functional properties. Lastly, while
our focus has been on code edits, we envision that our dataset –
which also contains text edits and their comments – can be of use
for mining other insights as well, including typical grammar fixes
or frequent formatting improvements.

We are open for feedback from the community on potential
improvements to the dataset and we are happy to provide support
for researcher who want to use or adapt our data.

REFERENCES
[1] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. 2018.

SOTorrent: reconstructing and analyzing the evolution of stack overflow posts.
In Proceedings of the 15th Int. Conf. on Mining Software Repositories (Gothenburg,
Sweden) (MSR ’18). ACM, 319–330.

[2] Sebastian Baltes and Markus Wagner. 2020. An Annotated Dataset of Stack
Overflow Post Edits. https://doi.org/10.5281/zenodo.3754159

[3] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56–65.

[4] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-Written Patches. In Proceedings of the
2013 International Conference on Software Engineering (San Francisco, CA, USA)
(ICSE ’13). IEEE Press, 802–811.

[5] William B. Langdon. 2015. Genetically Improved Software. In Handbook of
Genetic Programming Applications. Springer.

[6] X. B. D. Le, D. Lo, and C. L. Goues. 2016. History Driven Program Repair. In
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), Vol. 1. 213–224.

[7] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic Inference of Code
Transforms for Patch Generation. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (Klagenfurt, Austria) (ESEC/FSE 2017). ACM,
727–739.

[8] Irineu Moura, Gustavo Pinto, Felipe Ebert, and Fernando Castor. 2015. Mining
Energy-Aware Commits. In Proceedings of the 12th Working Conference on Mining
Software Repositories (Florence, Italy) (MSR ’15). IEEE Press, 56–67.

[9] Vivek Nair, Amritanshu Agrawal, Jianfeng Chen, Wei Fu, George Mathew, Tim
Menzies, Leandro Minku, Markus Wagner, and Zhe Yu. 2018. Data-driven Search-
based Software Engineering. In Proceedings of the 15th Int. Conf. on Mining
Software Repositories (Gothenburg, Sweden) (MSR ’18). ACM, 341–352.

[10] Justyna Petke. 2017. New Operators for Non-Functional Genetic Improvement. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion
(GECCO ’17). ACM, 1541–1542.

[11] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
a Comprehensive Survey. Transactions on Evolutionary Computation 22, 3 (June
2018), 415–432.

https://en.wikipedia.org/w/index.php?title=Non-functional_requirement&oldid=947189406
https://en.wikipedia.org/w/index.php?title=Non-functional_requirement&oldid=947189406
https://bigquery.cloud.google.com/table/sotorrent-org:2020_01_24_edits.PostEdits
https://doi.org/10.5281/zenodo.3754159

	Abstract
	1 Motivation
	2 Stack Overflow Post Edits
	3 Examples
	4 Outlook
	References

