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Evidence-based Practice  through Practice-based Evidence



Opinion vs. Evidence

• Opinion: “Increasing test coverage reduces the number of bugs.”
• Evidence: Wasting time testing simple code might even increase 

the number of bugs.
Article 1: https://ieeexplore.ieee.org/document/5315981
Article 2: https://dl.acm.org/doi/10.1109/ESEM.2017.44

• Opinion: “Test-driven development reduces number of bugs but 
increases development time.”
• Evidence: Supports the above statement.

Article: https://link.springer.com/article/10.1007/s10664-008-9062-z
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https://ieeexplore.ieee.org/document/5315981
https://dl.acm.org/doi/10.1109/ESEM.2017.44
https://link.springer.com/article/10.1007/s10664-008-9062-z
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Evidence-based Practice  through Practice-based Evidence

Research Practice

informs

informs
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Implications:

1) Strong understanding of state of practice 
is essential

2) To reach this understanding, researchers 
need to utilize diverse empirical research 
methods and learn from other 
disciplines

3) To advance evidence-based practice, 
researchers need to invest effort into 
communicating findings back to 
practitioners

Evidence-based Practice  through Practice-based Evidence

Research Practice

informs

informs



7Sebastian Baltes - Empirical Software Engineering



Empirical Software Engineering

• Software Engineering:
Systematically building and maintaining software systems

• Software Engineering Research:
Systematically building and maintaining a body of knowledge about how 
to best build and maintain software systems, e.g., by exploring novel 
tools, process improvements, etc. 

• Empirical Software Engineering Research:
Software Engineering Research with a strong empirical focus, i.e., 
systematic observation/investigation of people and artifacts involved in 
software development 
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Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity

Empirical Software Engineering
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Examples
(own research)

Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity



Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity
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Sketching

FSE ‘14,
ESEM ‘15,
VISSOFT '17

Examples
(own research)



Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity
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Sketching

Code Plagiarism

FSE ‘14,
ESEM ‘15,
VISSOFT '17

EMSE ‘18,
MSR ‘18,
MSR ’19,
ICSE ‘20

Examples
(own research)



Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity
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Sketching

Code Plagiarism

Pandemic 
Programming

FSE ‘14,
ESEM ‘15,
VISSOFT '17

EMSE ‘18,
MSR ‘18,
MSR ’19,
ICSE ‘20

EMSE ‘20

Examples
(own research)
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Let’s started with a 
first exemplary study



17. June 2021 on Hacker News
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Code Plagiarism

Publications:
EMSE 2018, MSR 2018, MSR 2019, ICSE 2020 NIER



Takeaways for you

• Software licensing is a complex topic, a general 
understanding of permissive vs. copyleft licenses is 
essential 

• Implications of license violations for 
companies/individuals can be severe

•We can use data mining techniques to detect and 
quantify code plagiarism from Stack Overflow – so 
others can do this as well!
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Stack Overflow
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Question

Answer(s)

https://stackoverflow.com/q/309424

https://stackoverflow.com/a/5445161

https://stackoverflow.com/q/309424
https://stackoverflow.com/a/5445161
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Source of snippet Reference to JDK

Post edits Reasons for edits

Code snippet
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https://christianheilmann.com/2015/07/17/the-full-stackoverflow-developer/

https://twitter.com/ThePracticalDev/status/705825638851149824

https://christianheilmann.com/2015/07/17/the-full-stackoverflow-developer/
https://twitter.com/ThePracticalDev/status/705825638851149824


Research Design

Question:
How frequently is code from Stack Overflow posts used in 
public GitHub projects without the required attribution?

Method:
Triangulation of an estimate for the attribution ratio using 
three different data mining approaches.
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Code Plagiarism

Article: https://link.springer.com/article/10.1007/s10664-018-9650-5

https://link.springer.com/article/10.1007/s10664-018-9650-5


Question for the Audience

Who knew that all content on Stack Overflow is 
licensed under CC BY-SA?
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Attribution Share-alike

"You must give 
appropriate credit […] 
and indicate if changes 
were made."

“If you […] build upon the 
material, you must distribute 
your contri-butions under 
the same license as the 
original.”

Code Plagiarism



Background

“Well, but these snippets are rather trivial and 
not protected by copyright.”
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• Not all snippets on Stack Overflow copyrightable, but some 
experts argue that the threshold is low
[Engelfriet 2016]

• No “international standard for originality”
[Creative Commons 2017b]

• CC BY-SA is a viral copyleft license, affecting all modifications and 
derived works
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Permissive Licenses

• Permit using the licensed source code in 
proprietary software without publishing 
changes or the derived work

• Examples: MIT, Apache, and BSD license 
families

Copyleft Licenses

• Requires either modifications to the 
licensed content or the complete 
derived work to be published under the 
same or a compatible license (share-
alike)

• Examples (weak copyleft): 
Mozilla/Eclipse Public Licenses

• Examples (viral copyleft): GNU General 
Public Licenses, Creative Commons 
Share-Alike Licenses (e.g., CC BY-SA)

Implications of Stack Overflow’s License

24Sebastian Baltes - Empirical Software Engineering



Enforceability of Copyleft Licenses
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• Courts in the US and Europe ruled that open-source licenses are 
enforceable contracts

• Authors can sue when terms such as the share-alike requirement are 
violated:
• Interdict distribution of derived work
• Claim monetary damages

• USA: DMCA takedown notices for allegedly infringed copyright
• Example: https://github.com/github/dmca

• Risk in mergers and acquisitions of companies
• Example: FSF vs. Cisco lawsuit

https://github.com/github/dmca
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https://stackoverflow.com/a/3145655
https://github.com/pacosal/ownmdm/blob/master/src/com/pacosal/mdm/MyLocation.java


Triangulated Attribution Ratio
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1. Exploratory study

2. Code clone detector study

3. Exact matches study

Question: How frequently is 
code from Stack Overflow posts 
used in public GitHub projects 
without the required 
attribution?

Code Plagiarism

<latexit sha1_base64="Qc5aX9R29/pwIkJShlJ9Gl2qpJM=">AAACPnicbVBLSwMxGMz6rPVV9eglWARPZVdEvQjFXjxWsA/oliWbzbah2QfJt2JZ95d58Td48+jFgyJePZpuF9HWgcBkZj6Sb9xYcAWm+WwsLC4tr6yW1srrG5tb25Wd3baKEklZi0Yikl2XKCZ4yFrAQbBuLBkJXME67qgx8Tu3TCoehTcwjlk/IIOQ+5wS0JJTadkukanMHBvYHaQEQGb4Atu+JDTF97hRGCrK9C2blWyaxD+Cl8R5yLadStWsmTnwPLEKUkUFmk7lyfYimgQsBCqIUj3LjKGfEgmcCpaV7USxmNARGbCepiEJmOqn+foZPtSKh/1I6hMCztXfEykJlBoHrk4GBIZq1puI/3m9BPzzfsrDOAEW0ulDfiIwRHjSJfa4ZBTEWBNCJdd/xXRIdHOgGy/rEqzZledJ+7hmndbM65Nq/bKoo4T20QE6QhY6Q3V0hZqohSh6QC/oDb0bj8ar8WF8TqMLRjGzh/7A+PoGVfawXw==</latexit>

r̄attr =
|Cso|

|Cso [ Cdup|

We used popularity and length of the snippets as a proxy for 
originality and checked external availability.



Method 1: Regular Expressions
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Files
.java 10 most frequently 

referenced answers
...stackoverflow\.com...

4,198 files with 
matches

Manually build regular 
expressions matching code 

snippets
(referenced usages as test cases) 

Check external 
availability

Check if true positive 
and attributed

<latexit sha1_base64="51SkgcAUnXfJwDC+uymEtepmTnk=">AAACA3icbVC7SgNBFJ31GeNrVbDQZjAErMJuBLURQmwsEzAPyC5hdjKbDJl9MHNXDEvAxl+xEVHE1s4vsLPxW5w8Ck08cOFwzr3ce48XC67Asr6MhcWl5ZXVzFp2fWNza9vc2a2rKJGU1WgkItn0iGKCh6wGHARrxpKRwBOs4fUvR37jhknFo/AaBjFzA9INuc8pAS21zQPHIzKVw7YD7BZSAiCH+AIXT5x828xZBWsMPE/sKcmV9qvf/Kn8UWmbn04noknAQqCCKNWyrRjclEjgVLBh1kkUiwntky5raRqSgCk3Hf8wxHmtdLAfSV0h4LH6eyIlgVKDwNOdAYGemvVG4n9eKwH/3E15GCfAQjpZ5CcCQ4RHgeAOl4yCGGhCqOT6Vkx7RBIKOrasDsGefXme1IsF+7RgVXUaZTRBBh2iI3SMbHSGSugKVVANUXSHHtAzejHujUfj1XibtC4Y05k99AfG+w8r25ri</latexit>

r̄attr = 23%



Method 2: Code Clone Detector
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Java projects in 
GHTorrent 2,314 projects

Referenced answers
(n= 137 snippets)

...stackoverflow\.com...

Data from
Method 1

100 most frequently 
referenced answers 

(n=111 snippets)



Method 2: Code Clone Detector
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2,314 projects

Referenced answers
(n= 137 snippets)

100 most frequently 
referenced answers 

(n=111 snippets)

Ground truth for calibration Search for clones

Matches in 297 
files from 199 

projects
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Check if clones are 
true positive and 

attributed

<latexit sha1_base64="CVNTOBk4Amad1QvSk/cOrAAOxSU=">AAACA3icbVC7SgNBFJ31GeNrVbDQZjAErMJuELURQmwsEzAPyC5hdjKbDJl9MHNXDEvAxl+xEVHE1s4vsLPxW5w8Ck08cOFwzr3ce48XC67Asr6MhcWl5ZXVzFp2fWNza9vc2a2rKJGU1WgkItn0iGKCh6wGHARrxpKRwBOs4fUvR37jhknFo/AaBjFzA9INuc8pAS21zQPHIzKVw7YD7BZSAiCH+AIXT5x828xZBWsMPE/sKcmV9qvf/Kn8UWmbn04noknAQqCCKNWyrRjclEjgVLBh1kkUiwntky5raRqSgCk3Hf8wxHmtdLAfSV0h4LH6eyIlgVKDwNOdAYGemvVG4n9eKwH/3E15GCfAQjpZ5CcCQ4RHgeAOl4yCGGhCqOT6Vkx7RBIKOrasDsGefXme1IsF+7RgVXUaZTRBBh2iI3SMbHSGSugKVVANUXSHHtAzejHujUfj1XibtC4Y05k99AfG+w8tYZrj</latexit>

r̄attr = 24%



Method 3: Exact Matches
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Snippets

10,358
matches

Normalization and 
substring search

Files

Validate matches, check if 
attributed
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<latexit sha1_base64="cdlp2spQ5p73xAgSVSIh4oOLeDA=">AAACAnicbVC7SgNBFJ2Nrxhfq4IgNoMhYBV2LTSNEGJjmYB5QHYJs5PZZMjsg5m7YliCjb9iI6iIraVfYGfjtzh5FJp44MLhnHu59x4vFlyBZX0ZmaXlldW17HpuY3Nre8fc3WuoKJGU1WkkItnyiGKCh6wOHARrxZKRwBOs6Q0ux37zhknFo/AahjFzA9ILuc8pAS11zEPHIzKVo44D7BZSAiBH+AKXnELHzFtFawK8SOwZyZcPat/8qfJR7ZifTjeiScBCoIIo1batGNyUSOBUsFHOSRSLCR2QHmtrGpKAKTedvDDCBa10sR9JXSHgifp7IiWBUsPA050Bgb6a98bif147Ab/kpjyME2AhnS7yE4EhwuM8cJdLRkEMNSFUcn0rpn0iCQWdWk6HYM+/vEgap0X7rGjVdBoVNEUWHaFjdIJsdI7K6ApVUR1RdIce0DN6Me6NR+PVeJu2ZozZzD76A+P9B7kumqs=</latexit>

r̄attr = 8%



Attribution

Attribution ratio:
•Method 1 (regular expressions):
•Method 2 (code clone detector):
•Method 3 (exact matches):

Conservative estimate:
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Code Plagiarism

<latexit sha1_base64="51SkgcAUnXfJwDC+uymEtepmTnk=">AAACA3icbVC7SgNBFJ31GeNrVbDQZjAErMJuBLURQmwsEzAPyC5hdjKbDJl9MHNXDEvAxl+xEVHE1s4vsLPxW5w8Ck08cOFwzr3ce48XC67Asr6MhcWl5ZXVzFp2fWNza9vc2a2rKJGU1WgkItn0iGKCh6wGHARrxpKRwBOs4fUvR37jhknFo/AaBjFzA9INuc8pAS21zQPHIzKVw7YD7BZSAiCH+AIXT5x828xZBWsMPE/sKcmV9qvf/Kn8UWmbn04noknAQqCCKNWyrRjclEjgVLBh1kkUiwntky5raRqSgCk3Hf8wxHmtdLAfSV0h4LH6eyIlgVKDwNOdAYGemvVG4n9eKwH/3E15GCfAQjpZ5CcCQ4RHgeAOl4yCGGhCqOT6Vkx7RBIKOrasDsGefXme1IsF+7RgVXUaZTRBBh2iI3SMbHSGSugKVVANUXSHHtAzejHujUfj1XibtC4Y05k99AfG+w8r25ri</latexit>

r̄attr = 23%
<latexit sha1_base64="CVNTOBk4Amad1QvSk/cOrAAOxSU=">AAACA3icbVC7SgNBFJ31GeNrVbDQZjAErMJuELURQmwsEzAPyC5hdjKbDJl9MHNXDEvAxl+xEVHE1s4vsLPxW5w8Ck08cOFwzr3ce48XC67Asr6MhcWl5ZXVzFp2fWNza9vc2a2rKJGU1WgkItn0iGKCh6wGHARrxpKRwBOs4fUvR37jhknFo/AaBjFzA9INuc8pAS21zQPHIzKVw7YD7BZSAiCH+AIXT5x828xZBWsMPE/sKcmV9qvf/Kn8UWmbn04noknAQqCCKNWyrRjclEjgVLBh1kkUiwntky5raRqSgCk3Hf8wxHmtdLAfSV0h4LH6eyIlgVKDwNOdAYGemvVG4n9eKwH/3E15GCfAQjpZ5CcCQ4RHgeAOl4yCGGhCqOT6Vkx7RBIKOrasDsGefXme1IsF+7RgVXUaZTRBBh2iI3SMbHSGSugKVVANUXSHHtAzejHujUfj1XibtC4Y05k99AfG+w8tYZrj</latexit>

r̄attr = 24%
<latexit sha1_base64="cdlp2spQ5p73xAgSVSIh4oOLeDA=">AAACAnicbVC7SgNBFJ2Nrxhfq4IgNoMhYBV2LTSNEGJjmYB5QHYJs5PZZMjsg5m7YliCjb9iI6iIraVfYGfjtzh5FJp44MLhnHu59x4vFlyBZX0ZmaXlldW17HpuY3Nre8fc3WuoKJGU1WkkItnyiGKCh6wOHARrxZKRwBOs6Q0ux37zhknFo/AahjFzA9ILuc8pAS11zEPHIzKVo44D7BZSAiBH+AKXnELHzFtFawK8SOwZyZcPat/8qfJR7ZifTjeiScBCoIIo1batGNyUSOBUsFHOSRSLCR2QHmtrGpKAKTedvDDCBa10sR9JXSHgifp7IiWBUsPA050Bgb6a98bif147Ab/kpjyME2AhnS7yE4EhwuM8cJdLRkEMNSFUcn0rpn0iCQWdWk6HYM+/vEgap0X7rGjVdBoVNEUWHaFjdIJsdI7K6ApVUR1RdIce0DN6Me6NR+PVeJu2ZozZzD76A+P9B7kumqs=</latexit>

r̄attr = 8%

<latexit sha1_base64="3R1KxPATFIPjsxfPv6Iz0xgzr1Y=">AAACBXicbVC7SgNBFJ2Nrxhfq4KNFoMhYBV2Az5K0cYyAaNCNoTZyd1kyOyDmbtiWLax8VdsUihia+MX2Nn4LU4SC18HLhzOuZd77/ETKTQ6zrtVmJmdm18oLpaWlldW1+z1jQsdp4pDk8cyVlc+0yBFBE0UKOEqUcBCX8KlPzgd+5fXoLSIo3McJtAOWS8SgeAMjdSxdzyfqUzlHQ/hBjOGqHLqSaC1fa/SsctO1ZmA/iXuFykfbzU+xOjktd6x37xuzNMQIuSSad1ynQTbGVMouIS85KUaEsYHrActQyMWgm5nky9yWjFKlwaxMhUhnajfJzIWaj0MfdMZMuzr395Y/M9rpRgctTMRJSlCxKeLglRSjOk4EtoVCjjKoSGMK2FupbzPFONogiuZENzfL/8lF7Wqe1B1GiaNEzJFkWyTXbJHXHJIjskZqZMm4eSW3JMH8mjdWSPryXqethasr5lN8gPWyyf7kpvo</latexit>

r̄attr  25%



Share-alike

Only 2% of all analyzed repositories (methods 1-3) 
containing code from Stack Overflow attributed its source 
and used a compatible license.
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Code Plagiarism



Reaching out to Developers
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• Contacted owners of GitHub repositories 
containing copies of Stack Overflow snippets

• 75% not aware of CC BY-SA licensing

•Many thankful responses

Code Plagiarism



Reaching out to Developers
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Code Plagiarism



Stack Overflow Code in the OpenJDK
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https://bugs.openjdk.java.net/browse/JDK-8170860

https://bugs.openjdk.java.net/browse/JDK-8170860
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Summary
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Triangulation using three 
data mining approaches, 
online survey, (qualit. 
analysis) 

Research on worldwide 
copyright and licensing 
legislation, exemplary 
cases

Quantification of code 
plagiarism in open-source 
projects, outreach to 
developers 

Code Plagiarism
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Let’s continue with 
a second example



Takeaways for you

•Many of the challenges around code review are 
non-technical

• Constant (systematic) reflection on own code 
review process is important

• Knowing challenges helps deriving 
solutions/mitigations
(details later)
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Empirical SE at Microsoft: Code Reviews
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Article: https://ieeexplore.ieee.org/abstract/document/7950877

https://ieeexplore.ieee.org/abstract/document/7950877


Code Reviewing

• Peer reviewing code for
quality assurance

• Usually done before code is
merged into main branch

• Goals:
• Better code quality
• Finding potential issues early
• Knowledge transfer/diffusion
• Shared code ownership

41Sebastian Baltes - Empirical Software Engineering



Why study Code Reviewing?

• “Code reviews are straight-forward to do and tool support exists, problem 
solved.”

• Really? Some things to consider:
• Level of detail (code style vs. semantic issues)
• Code criticism turns into personal criticism
• Large changes à LGTM
• Code review ping pong
• etc.

• Empirical research can help distilling antipatterns, best practices, and 
requirements for improved tool support

42Sebastian Baltes - Empirical Software Engineering



Code Reviewing Study at Microsoft

• Focus on four teams
(newcomers, senior developers, team leads)

• Wide range of projects
(legacy vs. new, internal vs. external)

• Ethnographic study
(observing developers in their workplace for one week/team)

• Semi-structured interviews directly after code reviewing activities
• 18 developers

• Follow-up survey with broader set of developers
(validate initial findings)
• 911 responses
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Code Reviewing at Microsoft

• Process (shared by all teams, internal tooling):
• Preparation of code to be reviewed
• Selection of reviewers (automatically or manually, varying selection 

requirements)
• Notification of selected reviewer(s)
• Review of code, sharing feedback with author(s)
• Iteration (communication between authors and reviewers)
• Merge code (sometimes before review)
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Code Reviewing at Microsoft

• Developers recognize value of code reviews
• Are more thorough when they know code is reviewed
• More confidence in reviewed code
• Not all teams had explicit rules/policies around code reviews
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Code Reviewing at Microsoft

• Communication between 
authors and reviewers usually 
within tool
• Controversial issues discussed 

via other channels
(face-to-face, video conference, instant 
messaging, etc.)
à no public blaming
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Code Reviewing Challenges: Authors

• Getting timely feedback
(authors must constantly remind reviewers)

• Getting insightful feedback
(focus on insignificant details rather than larger issues)

• Finding suitable/willing reviewers

• Getting a change rejected without
enough feedback

• Communication in tool slows down, but
other communication is often ephemeral
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Code Reviewing Challenges: Reviewers

• Reviewing large changes

• Balancing writing new code vs. reviewing others’ code

• Understanding code’s purpose, motivation, implementation

• Finding relevant documentation

• Lack of appreciation

• Missing training

48Sebastian Baltes - Empirical Software Engineering



Code Reviewing 
Best Practices
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Final example



Takeaways for you

• Learn about a technique to assess quality of test 
cases (that is not coverage)

• Awareness for challenges/limitations

• Learn how Facebook uses mutation testing

51Sebastian Baltes - Empirical Software Engineering



Empirical SE at Facebook: Mutation Testing
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Article: https://arxiv.org/pdf/2010.13464.pdf

https://arxiv.org/pdf/2010.13464.pdf


Mutation Testing
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• Assess quality of existing test suite

• Modify (“mutate”) program in small ways to see whether test suite 
would detect the potential defect (“kill mutant”)

• Mutation operators based on typical programming errors (e.g., off-by-
one errors in loops, using + instead of – operator, etc.)

• Quality metric: % of killed mutants

• Design test cases to kill more mutants



Mutation Testing: Example
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Conditionals Boundary Mutator
(CONDITIONALS_BOUNDARY)
The conditionals boundary mutator replaces the relational operators <, 
<=, >, >= with their boundary counterpart as per the table below.

Original conditional Mutated conditional

< <=

<= <

> >=

>= >

http://pitest.org/quickstart/mutators/#CONDITIONALS_BOUNDARY

http://pitest.org/quickstart/mutators/


Mutation Testing: Example
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pom.xml

<plugin>
<groupId>org.pitest</groupId>
<artifactId>pitest-maven</artifactId>
<version>LATEST</version>

</plugin> 

Terminal

mvn clean install
mvn org.pitest:pitest-maven:mutationCoverage

http://pitest.org/quickstart/maven/

http://pitest.org/quickstart/maven/
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Mutation Testing
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• “Cool, problem solved! Mutation operators are straight-forward, tool 
support exists, you can simply apply it to your project and improve 
your test cases.”

• But:
• What about mutations of unreachable code?
• More complex mutations?
• Range of potential mutations in indefinite,

time/computation resources are usually not
• Developers still need to decide whether a surviving

mutant is really a problem, write test cases
• etc.



Tools and Processes at Facebook

• Getafix: automatically learns and applies fixes to bugs detected 
by static analysis tools
(static analysis tool shows null pointer warning together with code change suggestion)

• Change-based testing: run selection of unit, integration, and 
system tests before code review starts
(ML-based test selection strategy)

• Sapienz: Search-based automated
testing
(automatic generation and execution of test cases)

• Mutation Monkey: Mutation testing
tool that learns operators from past
bug-inducing changes and fixes
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Study Design
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Learning 
mutation 
operators

Applying 
learned 
operators to 
100 randomly 
selected diffs 
per day



Results Quantitative Study
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User Study

• Randomized controlled trial with 26 Facebook software 
developers
• Show developer unkilled mutant
• Semi-structured remote interview to find out:
• Did mutant indeed reveal missing test?
• Would developers act on them? Why/why not?
• Is reverse test coverage for mutation helpful?

(50% got coverage information, 50% not)
(Which tests execute which parts of the program?)
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Results

• Most developers did not know what mutation testing was, but found 
it useful
• Mutation diff alone was not enough to understand mutation 

operations and whether to add a test
• Knowing that operators are mined from past changes was not enough 

to convince developers of their usefulness
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Results
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• Study authors: “concrete actionability on mutants is the end metric that 
matters”
• Adding test cases was to be worth the effort
à opportunity cost
• Decision not to act often based on contextual information, e.g.
• Code does not need testing, because it’s just for logging purposes
• Code will be deprecated soon

• Contextual information often tacit, i.e., not externalized
• It comes down to developers’ decisions
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One more thing…



Selection of Empirical SE Courses

• University or Toronto, Canada
http://www.cs.toronto.edu/~sme/CSC2130/index.html

• Carnegie Mellon University, USA
https://github.com/bvasiles/empirical-methods

• University of Victoria, Canada
https://github.com/margaretstorey/EmseUvic2020

• Eindhoven University of Technology, Netherlands
https://www.youtube.com/watch?v=34hcH7Js41I&list=PLmAXH4O57P5
_0IflYjLIg8l0IupZPbdlY
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http://www.cs.toronto.edu/~sme/CSC2130/index.html
https://github.com/bvasiles/empirical-methods
https://github.com/margaretstorey/EmseUvic2020
https://www.youtube.com/watch?v=34hcH7Js41I&list=PLmAXH4O57P5_0IflYjLIg8l0IupZPbdlY
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