
@s_baltes
Dr. Sebastian Baltes

empirical-software.engineering

Empirical Software Engineering
Opinion vs. Evidence in Software Development



Interaction

1Sebastian Baltes - Empirical Software Engineering



Personal Background

2Sebastian Baltes - Empirical Software Engineering

Senior Software Engineer
QAware GmbH

Mainz, Germany
80%

Adjunct Lecturer
University of Adelaide
Adelaide, Australia
20%



3Sebastian Baltes - Empirical Software Engineering

Evidence-based Practice  through Practice-based Evidence



Opinion vs. Evidence

• Opinion: “Increasing test coverage reduces the number of bugs.”
• Evidence: Wasting time testing simple code might even increase 

the number of bugs.
Article 1: https://ieeexplore.ieee.org/document/5315981
Article 2: https://dl.acm.org/doi/10.1109/ESEM.2017.44

• Opinion: “Test-driven development reduces number of bugs but 
increases development time.”
• Evidence: Supports the above statement.

Article: https://link.springer.com/article/10.1007/s10664-008-9062-z

4Sebastian Baltes - Empirical Software Engineering

https://ieeexplore.ieee.org/document/5315981
https://dl.acm.org/doi/10.1109/ESEM.2017.44
https://link.springer.com/article/10.1007/s10664-008-9062-z


5Sebastian Baltes - Empirical Software Engineering

Evidence-based Practice  through Practice-based Evidence

Research Practice

informs

informs



6Sebastian Baltes - Empirical Software Engineering

Implications:

1) Strong understanding of state of practice 
is essential

2) To reach this understanding, researchers 
need to utilize diverse empirical research 
methods and learn from other 
disciplines

3) To advance evidence-based practice, 
researchers need to invest effort into 
communicating findings back to 
practitioners

Evidence-based Practice  through Practice-based Evidence

Research Practice

informs

informs



7Sebastian Baltes - Empirical Software Engineering



Empirical Software Engineering

• Software Engineering:
Systematically building and maintaining software systems

• Software Engineering Research:
Systematically building and maintaining a body of knowledge about how 
to best build and maintain software systems, e.g., by exploring novel 
tools, process improvements, etc. 

• Empirical Software Engineering Research:
Software Engineering Research with a strong empirical focus, i.e., 
systematic observation/investigation of people and artifacts involved in 
software development 

8Sebastian Baltes - Empirical Software Engineering



9Sebastian Baltes - Empirical Software Engineering

Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity

Empirical Software Engineering



10Sebastian Baltes - Empirical Software Engineering

Examples
(own research)

Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity



Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity

11Sebastian Baltes - Empirical Software Engineering

Sketching

FSE ‘14,
ESEM ‘15,
VISSOFT '17

Examples
(own research)



Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity

12Sebastian Baltes - Empirical Software Engineering

Sketching

Code Plagiarism

FSE ‘14,
ESEM ‘15,
VISSOFT '17

EMSE ‘18,
MSR ‘18,
MSR ’19,
ICSE ‘20

Examples
(own research)



Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity

13Sebastian Baltes - Empirical Software Engineering

Sketching

Code Plagiarism

Pandemic 
Programming

FSE ‘14,
ESEM ‘15,
VISSOFT '17

EMSE ‘18,
MSR ‘18,
MSR ’19,
ICSE ‘20

EMSE ‘20

Examples
(own research)



14Sebastian Baltes - Empirical Software Engineering

Let’s started with a 
first exemplary study



17. June 2021 on Hacker News

15Sebastian Baltes - Empirical Software Engineering



16Sebastian Baltes - Empirical Software Engineering

Code Plagiarism

Publications:
EMSE 2018, MSR 2018, MSR 2019, ICSE 2020 NIER



Takeaways for you

• Software licensing is a complex topic, a general 
understanding of permissive vs. copyleft licenses is 
essential 

• Implications of license violations for 
companies/individuals can be severe

•We can use data mining techniques to detect and 
quantify code plagiarism from Stack Overflow – so 
others can do this as well!

17Sebastian Baltes - Empirical Software Engineering



Stack Overflow

18Sebastian Baltes - Empirical Software Engineering

Question

Answer(s)

https://stackoverflow.com/q/309424

https://stackoverflow.com/a/5445161

https://stackoverflow.com/q/309424
https://stackoverflow.com/a/5445161


19Sebastian Baltes - Empirical Software Engineering

Source of snippet Reference to JDK

Post edits Reasons for edits

Code snippet



20Sebastian Baltes - Empirical Software Engineering

https://christianheilmann.com/2015/07/17/the-full-stackoverflow-developer/

https://twitter.com/ThePracticalDev/status/705825638851149824

https://christianheilmann.com/2015/07/17/the-full-stackoverflow-developer/
https://twitter.com/ThePracticalDev/status/705825638851149824


Research Design

Question:
How frequently is code from Stack Overflow posts used in 
public GitHub projects without the required attribution?

Method:
Triangulation of an estimate for the attribution ratio using 
three different data mining approaches.

21Sebastian Baltes - Empirical Software Engineering

Code Plagiarism

Article: https://link.springer.com/article/10.1007/s10664-018-9650-5

https://link.springer.com/article/10.1007/s10664-018-9650-5


Question for the Audience

Who knew that all content on Stack Overflow is 
licensed under CC BY-SA?

22Sebastian Baltes - Empirical Software Engineering

Attribution Share-alike

"You must give 
appropriate credit […] 
and indicate if changes 
were made."

“If you […] build upon the 
material, you must distribute 
your contri-butions under 
the same license as the 
original.”

Code Plagiarism



Background

“Well, but these snippets are rather trivial and 
not protected by copyright.”

23Sebastian Baltes - Empirical Software Engineering

• Not all snippets on Stack Overflow copyrightable, but some 
experts argue that the threshold is low
[Engelfriet 2016]

• No “international standard for originality”
[Creative Commons 2017b]

• CC BY-SA is a viral copyleft license, affecting all modifications and 
derived works

ht
tp
:/
/t
he

co
nv
er
sa
tio

n.
co
m
/w

hy
-u
ni
ve
rs
iti
es
-c
an

t-
be

-e
xp
ec
te
d-
to
-p
ol
ic
e-
co
py
rig

ht
-in

fr
in
ge
m
en

t-8
26
77

Code Plagiarism



Permissive Licenses

• Permit using the licensed source code in 
proprietary software without publishing 
changes or the derived work

• Examples: MIT, Apache, and BSD license 
families

Copyleft Licenses

• Requires either modifications to the 
licensed content or the complete 
derived work to be published under the 
same or a compatible license (share-
alike)

• Examples (weak copyleft): 
Mozilla/Eclipse Public Licenses

• Examples (viral copyleft): GNU General 
Public Licenses, Creative Commons 
Share-Alike Licenses (e.g., CC BY-SA)

Implications of Stack Overflow’s License

24Sebastian Baltes - Empirical Software Engineering



Enforceability of Copyleft Licenses

25Sebastian Baltes - Empirical Software Engineering

• Courts in the US and Europe ruled that open-source licenses are 
enforceable contracts

• Authors can sue when terms such as the share-alike requirement are 
violated:
• Interdict distribution of derived work
• Claim monetary damages

• USA: DMCA takedown notices for allegedly infringed copyright
• Example: https://github.com/github/dmca

• Risk in mergers and acquisitions of companies
• Example: FSF vs. Cisco lawsuit

https://github.com/github/dmca


26Sebastian Baltes - Empirical Software Engineeringhttps://stackoverflow.com/a/3145655 ht
tp

s:
//

gi
th

ub
.c

om
/p

ac
os

al
/o

w
nm

dm
/b

lo
b/

m
as

te
r/

sr
c/

co
m

/p
ac

os
al

/m
dm

/M
yL

oc
at

io
n.

ja
va

https://stackoverflow.com/a/3145655
https://github.com/pacosal/ownmdm/blob/master/src/com/pacosal/mdm/MyLocation.java


Triangulated Attribution Ratio

27Sebastian Baltes - Empirical Software Engineering

1. Exploratory study

2. Code clone detector study

3. Exact matches study

Question: How frequently is 
code from Stack Overflow posts 
used in public GitHub projects 
without the required 
attribution?

Code Plagiarism

<latexit sha1_base64="Qc5aX9R29/pwIkJShlJ9Gl2qpJM=">AAACPnicbVBLSwMxGMz6rPVV9eglWARPZVdEvQjFXjxWsA/oliWbzbah2QfJt2JZ95d58Td48+jFgyJePZpuF9HWgcBkZj6Sb9xYcAWm+WwsLC4tr6yW1srrG5tb25Wd3baKEklZi0Yikl2XKCZ4yFrAQbBuLBkJXME67qgx8Tu3TCoehTcwjlk/IIOQ+5wS0JJTadkukanMHBvYHaQEQGb4Atu+JDTF97hRGCrK9C2blWyaxD+Cl8R5yLadStWsmTnwPLEKUkUFmk7lyfYimgQsBCqIUj3LjKGfEgmcCpaV7USxmNARGbCepiEJmOqn+foZPtSKh/1I6hMCztXfEykJlBoHrk4GBIZq1puI/3m9BPzzfsrDOAEW0ulDfiIwRHjSJfa4ZBTEWBNCJdd/xXRIdHOgGy/rEqzZledJ+7hmndbM65Nq/bKoo4T20QE6QhY6Q3V0hZqohSh6QC/oDb0bj8ar8WF8TqMLRjGzh/7A+PoGVfawXw==</latexit>

r̄attr =
|Cso|

|Cso [ Cdup|

We used popularity and length of the snippets as a proxy for 
originality and checked external availability.



Method 1: Regular Expressions

28Sebastian Baltes - Empirical Software Engineering

ht
tp
s:
//
iw
sc
20
18
.g
ith

ub
.io

/a
ss
et
s/
im

g/
sh
ee
p.
pn

g

Files
.java 10 most frequently 

referenced answers
...stackoverflow\.com...

4,198 files with 
matches

Manually build regular 
expressions matching code 

snippets
(referenced usages as test cases) 

Check external 
availability

Check if true positive 
and attributed

<latexit sha1_base64="51SkgcAUnXfJwDC+uymEtepmTnk=">AAACA3icbVC7SgNBFJ31GeNrVbDQZjAErMJuBLURQmwsEzAPyC5hdjKbDJl9MHNXDEvAxl+xEVHE1s4vsLPxW5w8Ck08cOFwzr3ce48XC67Asr6MhcWl5ZXVzFp2fWNza9vc2a2rKJGU1WgkItn0iGKCh6wGHARrxpKRwBOs4fUvR37jhknFo/AaBjFzA9INuc8pAS21zQPHIzKVw7YD7BZSAiCH+AIXT5x828xZBWsMPE/sKcmV9qvf/Kn8UWmbn04noknAQqCCKNWyrRjclEjgVLBh1kkUiwntky5raRqSgCk3Hf8wxHmtdLAfSV0h4LH6eyIlgVKDwNOdAYGemvVG4n9eKwH/3E15GCfAQjpZ5CcCQ4RHgeAOl4yCGGhCqOT6Vkx7RBIKOrasDsGefXme1IsF+7RgVXUaZTRBBh2iI3SMbHSGSugKVVANUXSHHtAzejHujUfj1XibtC4Y05k99AfG+w8r25ri</latexit>

r̄attr = 23%



Method 2: Code Clone Detector

29Sebastian Baltes - Empirical Software Engineering

Java projects in 
GHTorrent 2,314 projects

Referenced answers
(n= 137 snippets)

...stackoverflow\.com...

Data from
Method 1

100 most frequently 
referenced answers 

(n=111 snippets)



Method 2: Code Clone Detector

30Sebastian Baltes - Empirical Software Engineering

2,314 projects

Referenced answers
(n= 137 snippets)

100 most frequently 
referenced answers 

(n=111 snippets)

Ground truth for calibration Search for clones

Matches in 297 
files from 199 

projects

ht
tp
s:
//
iw
sc
20
18
.g
ith

ub
.io

/a
ss
et
s/
im

g/
sh
ee
p.
pn

g

Check if clones are 
true positive and 

attributed

<latexit sha1_base64="CVNTOBk4Amad1QvSk/cOrAAOxSU=">AAACA3icbVC7SgNBFJ31GeNrVbDQZjAErMJuELURQmwsEzAPyC5hdjKbDJl9MHNXDEvAxl+xEVHE1s4vsLPxW5w8Ck08cOFwzr3ce48XC67Asr6MhcWl5ZXVzFp2fWNza9vc2a2rKJGU1WgkItn0iGKCh6wGHARrxpKRwBOs4fUvR37jhknFo/AaBjFzA9INuc8pAS21zQPHIzKVw7YD7BZSAiCH+AIXT5x828xZBWsMPE/sKcmV9qvf/Kn8UWmbn04noknAQqCCKNWyrRjclEjgVLBh1kkUiwntky5raRqSgCk3Hf8wxHmtdLAfSV0h4LH6eyIlgVKDwNOdAYGemvVG4n9eKwH/3E15GCfAQjpZ5CcCQ4RHgeAOl4yCGGhCqOT6Vkx7RBIKOrasDsGefXme1IsF+7RgVXUaZTRBBh2iI3SMbHSGSugKVVANUXSHHtAzejHujUfj1XibtC4Y05k99AfG+w8tYZrj</latexit>

r̄attr = 24%



Method 3: Exact Matches

31Sebastian Baltes - Empirical Software Engineering

Snippets

10,358
matches

Normalization and 
substring search

Files

Validate matches, check if 
attributed

ht
tp
s:
//
iw
sc
20
18
.g
ith

ub
.io

/a
ss
et
s/
im

g/
sh
ee
p.
pn

g

<latexit sha1_base64="cdlp2spQ5p73xAgSVSIh4oOLeDA=">AAACAnicbVC7SgNBFJ2Nrxhfq4IgNoMhYBV2LTSNEGJjmYB5QHYJs5PZZMjsg5m7YliCjb9iI6iIraVfYGfjtzh5FJp44MLhnHu59x4vFlyBZX0ZmaXlldW17HpuY3Nre8fc3WuoKJGU1WkkItnyiGKCh6wOHARrxZKRwBOs6Q0ux37zhknFo/AahjFzA9ILuc8pAS11zEPHIzKVo44D7BZSAiBH+AKXnELHzFtFawK8SOwZyZcPat/8qfJR7ZifTjeiScBCoIIo1batGNyUSOBUsFHOSRSLCR2QHmtrGpKAKTedvDDCBa10sR9JXSHgifp7IiWBUsPA050Bgb6a98bif147Ab/kpjyME2AhnS7yE4EhwuM8cJdLRkEMNSFUcn0rpn0iCQWdWk6HYM+/vEgap0X7rGjVdBoVNEUWHaFjdIJsdI7K6ApVUR1RdIce0DN6Me6NR+PVeJu2ZozZzD76A+P9B7kumqs=</latexit>

r̄attr = 8%



Attribution

Attribution ratio:
•Method 1 (regular expressions):
•Method 2 (code clone detector):
•Method 3 (exact matches):

Conservative estimate:

32Sebastian Baltes - Empirical Software Engineering

Code Plagiarism

<latexit sha1_base64="51SkgcAUnXfJwDC+uymEtepmTnk=">AAACA3icbVC7SgNBFJ31GeNrVbDQZjAErMJuBLURQmwsEzAPyC5hdjKbDJl9MHNXDEvAxl+xEVHE1s4vsLPxW5w8Ck08cOFwzr3ce48XC67Asr6MhcWl5ZXVzFp2fWNza9vc2a2rKJGU1WgkItn0iGKCh6wGHARrxpKRwBOs4fUvR37jhknFo/AaBjFzA9INuc8pAS21zQPHIzKVw7YD7BZSAiCH+AIXT5x828xZBWsMPE/sKcmV9qvf/Kn8UWmbn04noknAQqCCKNWyrRjclEjgVLBh1kkUiwntky5raRqSgCk3Hf8wxHmtdLAfSV0h4LH6eyIlgVKDwNOdAYGemvVG4n9eKwH/3E15GCfAQjpZ5CcCQ4RHgeAOl4yCGGhCqOT6Vkx7RBIKOrasDsGefXme1IsF+7RgVXUaZTRBBh2iI3SMbHSGSugKVVANUXSHHtAzejHujUfj1XibtC4Y05k99AfG+w8r25ri</latexit>

r̄attr = 23%
<latexit sha1_base64="CVNTOBk4Amad1QvSk/cOrAAOxSU=">AAACA3icbVC7SgNBFJ31GeNrVbDQZjAErMJuELURQmwsEzAPyC5hdjKbDJl9MHNXDEvAxl+xEVHE1s4vsLPxW5w8Ck08cOFwzr3ce48XC67Asr6MhcWl5ZXVzFp2fWNza9vc2a2rKJGU1WgkItn0iGKCh6wGHARrxpKRwBOs4fUvR37jhknFo/AaBjFzA9INuc8pAS21zQPHIzKVw7YD7BZSAiCH+AIXT5x828xZBWsMPE/sKcmV9qvf/Kn8UWmbn04noknAQqCCKNWyrRjclEjgVLBh1kkUiwntky5raRqSgCk3Hf8wxHmtdLAfSV0h4LH6eyIlgVKDwNOdAYGemvVG4n9eKwH/3E15GCfAQjpZ5CcCQ4RHgeAOl4yCGGhCqOT6Vkx7RBIKOrasDsGefXme1IsF+7RgVXUaZTRBBh2iI3SMbHSGSugKVVANUXSHHtAzejHujUfj1XibtC4Y05k99AfG+w8tYZrj</latexit>

r̄attr = 24%
<latexit sha1_base64="cdlp2spQ5p73xAgSVSIh4oOLeDA=">AAACAnicbVC7SgNBFJ2Nrxhfq4IgNoMhYBV2LTSNEGJjmYB5QHYJs5PZZMjsg5m7YliCjb9iI6iIraVfYGfjtzh5FJp44MLhnHu59x4vFlyBZX0ZmaXlldW17HpuY3Nre8fc3WuoKJGU1WkkItnyiGKCh6wOHARrxZKRwBOs6Q0ux37zhknFo/AahjFzA9ILuc8pAS11zEPHIzKVo44D7BZSAiBH+AKXnELHzFtFawK8SOwZyZcPat/8qfJR7ZifTjeiScBCoIIo1batGNyUSOBUsFHOSRSLCR2QHmtrGpKAKTedvDDCBa10sR9JXSHgifp7IiWBUsPA050Bgb6a98bif147Ab/kpjyME2AhnS7yE4EhwuM8cJdLRkEMNSFUcn0rpn0iCQWdWk6HYM+/vEgap0X7rGjVdBoVNEUWHaFjdIJsdI7K6ApVUR1RdIce0DN6Me6NR+PVeJu2ZozZzD76A+P9B7kumqs=</latexit>

r̄attr = 8%

<latexit sha1_base64="3R1KxPATFIPjsxfPv6Iz0xgzr1Y=">AAACBXicbVC7SgNBFJ2Nrxhfq4KNFoMhYBV2Az5K0cYyAaNCNoTZyd1kyOyDmbtiWLax8VdsUihia+MX2Nn4LU4SC18HLhzOuZd77/ETKTQ6zrtVmJmdm18oLpaWlldW1+z1jQsdp4pDk8cyVlc+0yBFBE0UKOEqUcBCX8KlPzgd+5fXoLSIo3McJtAOWS8SgeAMjdSxdzyfqUzlHQ/hBjOGqHLqSaC1fa/SsctO1ZmA/iXuFykfbzU+xOjktd6x37xuzNMQIuSSad1ynQTbGVMouIS85KUaEsYHrActQyMWgm5nky9yWjFKlwaxMhUhnajfJzIWaj0MfdMZMuzr395Y/M9rpRgctTMRJSlCxKeLglRSjOk4EtoVCjjKoSGMK2FupbzPFONogiuZENzfL/8lF7Wqe1B1GiaNEzJFkWyTXbJHXHJIjskZqZMm4eSW3JMH8mjdWSPryXqethasr5lN8gPWyyf7kpvo</latexit>

r̄attr  25%



Share-alike

Only 2% of all analyzed repositories (methods 1-3) 
containing code from Stack Overflow attributed its source 
and used a compatible license.

33Sebastian Baltes - Empirical Software Engineering

Code Plagiarism



Reaching out to Developers

34Sebastian Baltes - Empirical Software Engineering

• Contacted owners of GitHub repositories 
containing copies of Stack Overflow snippets

• 75% not aware of CC BY-SA licensing

•Many thankful responses

Code Plagiarism



Reaching out to Developers

35Sebastian Baltes - Empirical Software Engineering

Code Plagiarism



Stack Overflow Code in the OpenJDK

36Sebastian Baltes - Empirical Software Engineering

https://bugs.openjdk.java.net/browse/JDK-8170860

https://bugs.openjdk.java.net/browse/JDK-8170860


37

Summary

Sebastian Baltes - Empirical Software Engineering

Triangulation using three 
data mining approaches, 
online survey, (qualit. 
analysis) 

Research on worldwide 
copyright and licensing 
legislation, exemplary 
cases

Quantification of code 
plagiarism in open-source 
projects, outreach to 
developers 

Code Plagiarism



38Sebastian Baltes - Empirical Software Engineering

Let’s continue with 
a second example



Takeaways for you

•Many of the challenges around code review are 
non-technical

• Constant (systematic) reflection on own code 
review process is important

• Knowing challenges helps deriving 
solutions/mitigations
(details later)

39Sebastian Baltes - Empirical Software Engineering



Empirical SE at Microsoft: Code Reviews

40Sebastian Baltes - Empirical Software Engineering

Article: https://ieeexplore.ieee.org/abstract/document/7950877

https://ieeexplore.ieee.org/abstract/document/7950877


Code Reviewing

• Peer reviewing code for
quality assurance

• Usually done before code is
merged into main branch

• Goals:
• Better code quality
• Finding potential issues early
• Knowledge transfer/diffusion
• Shared code ownership

41Sebastian Baltes - Empirical Software Engineering



Why study Code Reviewing?

• “Code reviews are straight-forward to do and tool support exists, problem 
solved.”

• Really? Some things to consider:
• Level of detail (code style vs. semantic issues)
• Code criticism turns into personal criticism
• Large changes à LGTM
• Code review ping pong
• etc.

• Empirical research can help distilling antipatterns, best practices, and 
requirements for improved tool support

42Sebastian Baltes - Empirical Software Engineering



Code Reviewing Study at Microsoft

• Focus on four teams
(newcomers, senior developers, team leads)

• Wide range of projects
(legacy vs. new, internal vs. external)

• Ethnographic study
(observing developers in their workplace for one week/team)

• Semi-structured interviews directly after code reviewing activities
• 18 developers

• Follow-up survey with broader set of developers
(validate initial findings)
• 911 responses

43Sebastian Baltes - Empirical Software Engineering



Code Reviewing at Microsoft

• Process (shared by all teams, internal tooling):
• Preparation of code to be reviewed
• Selection of reviewers (automatically or manually, varying selection 

requirements)
• Notification of selected reviewer(s)
• Review of code, sharing feedback with author(s)
• Iteration (communication between authors and reviewers)
• Merge code (sometimes before review)

44Sebastian Baltes - Empirical Software Engineering



Code Reviewing at Microsoft

• Developers recognize value of code reviews
• Are more thorough when they know code is reviewed
• More confidence in reviewed code
• Not all teams had explicit rules/policies around code reviews

45Sebastian Baltes - Empirical Software Engineering



Code Reviewing at Microsoft

• Communication between 
authors and reviewers usually 
within tool
• Controversial issues discussed 

via other channels
(face-to-face, video conference, instant 
messaging, etc.)
à no public blaming

46Sebastian Baltes - Empirical Software Engineering



Code Reviewing Challenges: Authors

• Getting timely feedback
(authors must constantly remind reviewers)

• Getting insightful feedback
(focus on insignificant details rather than larger issues)

• Finding suitable/willing reviewers

• Getting a change rejected without
enough feedback

• Communication in tool slows down, but
other communication is often ephemeral

47Sebastian Baltes - Empirical Software Engineering



Code Reviewing Challenges: Reviewers

• Reviewing large changes

• Balancing writing new code vs. reviewing others’ code

• Understanding code’s purpose, motivation, implementation

• Finding relevant documentation

• Lack of appreciation

• Missing training

48Sebastian Baltes - Empirical Software Engineering



Code Reviewing 
Best Practices

49Sebastian Baltes - Empirical Software Engineering



50Sebastian Baltes - Empirical Software Engineering
Final example



Takeaways for you

• Learn about a technique to assess quality of test 
cases (that is not coverage)

• Awareness for challenges/limitations

• Learn how Facebook uses mutation testing

51Sebastian Baltes - Empirical Software Engineering



Empirical SE at Facebook: Mutation Testing

52Sebastian Baltes - Empirical Software Engineering

Article: https://arxiv.org/pdf/2010.13464.pdf

https://arxiv.org/pdf/2010.13464.pdf


Mutation Testing

53Sebastian Baltes - Empirical Software Engineering

• Assess quality of existing test suite

• Modify (“mutate”) program in small ways to see whether test suite 
would detect the potential defect (“kill mutant”)

• Mutation operators based on typical programming errors (e.g., off-by-
one errors in loops, using + instead of – operator, etc.)

• Quality metric: % of killed mutants

• Design test cases to kill more mutants



Mutation Testing: Example

54Sebastian Baltes - Empirical Software Engineering

Conditionals Boundary Mutator
(CONDITIONALS_BOUNDARY)
The conditionals boundary mutator replaces the relational operators <, 
<=, >, >= with their boundary counterpart as per the table below.

Original conditional Mutated conditional

< <=

<= <

> >=

>= >

http://pitest.org/quickstart/mutators/#CONDITIONALS_BOUNDARY

http://pitest.org/quickstart/mutators/


Mutation Testing: Example

55Sebastian Baltes - Empirical Software Engineering

pom.xml

<plugin>
<groupId>org.pitest</groupId>
<artifactId>pitest-maven</artifactId>
<version>LATEST</version>

</plugin> 

Terminal

mvn clean install
mvn org.pitest:pitest-maven:mutationCoverage

http://pitest.org/quickstart/maven/

http://pitest.org/quickstart/maven/


Mutation Testing: Example

56Sebastian Baltes - Empirical Software Engineering



Mutation Testing

57Sebastian Baltes - Empirical Software Engineering

• “Cool, problem solved! Mutation operators are straight-forward, tool 
support exists, you can simply apply it to your project and improve 
your test cases.”

• But:
• What about mutations of unreachable code?
• More complex mutations?
• Range of potential mutations in indefinite,

time/computation resources are usually not
• Developers still need to decide whether a surviving

mutant is really a problem, write test cases
• etc.



Tools and Processes at Facebook

• Getafix: automatically learns and applies fixes to bugs detected 
by static analysis tools
(static analysis tool shows null pointer warning together with code change suggestion)

• Change-based testing: run selection of unit, integration, and 
system tests before code review starts
(ML-based test selection strategy)

• Sapienz: Search-based automated
testing
(automatic generation and execution of test cases)

• Mutation Monkey: Mutation testing
tool that learns operators from past
bug-inducing changes and fixes

58Sebastian Baltes - Empirical Software Engineering



Study Design

59Sebastian Baltes - Empirical Software Engineering

Learning 
mutation 
operators

Applying 
learned 
operators to 
100 randomly 
selected diffs 
per day



Results Quantitative Study

60Sebastian Baltes - Empirical Software Engineering



User Study

• Randomized controlled trial with 26 Facebook software 
developers
• Show developer unkilled mutant
• Semi-structured remote interview to find out:
• Did mutant indeed reveal missing test?
• Would developers act on them? Why/why not?
• Is reverse test coverage for mutation helpful?

(50% got coverage information, 50% not)
(Which tests execute which parts of the program?)

61Sebastian Baltes - Empirical Software Engineering



Results

• Most developers did not know what mutation testing was, but found 
it useful
• Mutation diff alone was not enough to understand mutation 

operations and whether to add a test
• Knowing that operators are mined from past changes was not enough 

to convince developers of their usefulness

62Sebastian Baltes - Empirical Software Engineering



Results

63Sebastian Baltes - Empirical Software Engineering

• Study authors: “concrete actionability on mutants is the end metric that 
matters”
• Adding test cases was to be worth the effort
à opportunity cost
• Decision not to act often based on contextual information, e.g.
• Code does not need testing, because it’s just for logging purposes
• Code will be deprecated soon

• Contextual information often tacit, i.e., not externalized
• It comes down to developers’ decisions



64Sebastian Baltes - Empirical Software Engineering

One more thing…



Selection of Empirical SE Courses

• University or Toronto, Canada
http://www.cs.toronto.edu/~sme/CSC2130/index.html

• Carnegie Mellon University, USA
https://github.com/bvasiles/empirical-methods

• University of Victoria, Canada
https://github.com/margaretstorey/EmseUvic2020

• Eindhoven University of Technology, Netherlands
https://www.youtube.com/watch?v=34hcH7Js41I&list=PLmAXH4O57P5
_0IflYjLIg8l0IupZPbdlY

65Sebastian Baltes - Empirical Software Engineering

http://www.cs.toronto.edu/~sme/CSC2130/index.html
https://github.com/bvasiles/empirical-methods
https://github.com/margaretstorey/EmseUvic2020
https://www.youtube.com/watch?v=34hcH7Js41I&list=PLmAXH4O57P5_0IflYjLIg8l0IupZPbdlY


Dr. Sebastian Baltes
empirical-software.engineering

@s_baltes

Questions?


