
RegViz: Visual Debugging of Regular Expressions

Fabian Beck1, Stefan Gulan2, Benjamin Biegel2,
Sebastian Baltes2, and Daniel Weiskopf1

1VISUS, University of Stuttgart, Germany
{fabian.beck,weiskopf}@visus.uni-stuttgart.de

2University of Trier, Germany
{biegel,s.baltes}@uni-trier.de
gulan@informatik.uni-trier.de

ABSTRACT
Regular expressions are a widely used programming tech-
nique, but seem to be neglected by software engineering
research. Encoding complex string parsing in a very com-
pact notation, their complexity and compactness, however,
introduce particular challenges with respect to program com-
prehension. In this paper, we present RegViz, an approach
to visually augment regular expressions without changing
their original textual notation. The visual encoding clarifies
the structure of the regular expressions and clearly discerns
included tokens by function. The approach also provides
advanced visual highlighting of matches in a sample text and
defining test cases therein. We implemented RegViz as a
Web-based tool for JavaScript regular expressions. Expert
feedback suggests that the approach is intuitive to apply and
increases the readability of regular expressions.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques—pretty printing, program editors

General Terms
Design, Human Factors, Languages

Keywords
Regular expressions, program comprehension, syntax high-
lighting, software visualization, visual debugging

1. INTRODUCTION
Regular expressions are a useful tool for processing textual

data. Already with a short expression, programmers are
able to match strings to a grammar, extract substrings from
texts, or implement a search feature—at least in theory. In
practice, however, regular expressions, though being short,
have a quite complex syntax themselves, do not include
elements that visually structure the expression, and contain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/05 ...$15.00.

cryptic subexpressions. For instance, what does this short
expression do?

\[([^\]]+)\]|\(([^\)]+)\)

Using traditional means of syntax highlighting might im-
prove the readability of a regular expression, but is limited to
coloring characters—structural information is hard to convey.
Regular expressions can also be visualized, for instance, as
a graph structure [4, 5, 8, 9]. Alternative representations,
however, do not only introduce a new notation that has to
be learned, but also the problem of a dual representation:
insights gained from the visualization need to be mapped to
the textual representation of the regular expression.

To overcome these issues, we present RegViz: a hybrid
approach to augment the original textual representation of
regular expressions with visual elements without using an
additional representation. We see our main contributions
in designing a visual augmentation of regular expressions
that clearly shows the structure of the expression, mapping
the visual representation of regular expressions to detected
matches in a sample text, and implementing the approach
as an Web-based tool for JavaScript regular expressions
(http://regviz.org).

2. RELATED WORK
Text editors and IDEs format source code according to its

structure (pretty printing) and colorize words and expres-
sions (syntax highlighting). Although even visualizations on
software metrics and execution behavior have been integrated
into text editors [1, 2, 7], regular expressions stay usually
unformatted within the code. What exists, however, are
visualizations of regular expressions that do not augment the
text but completely replace it or use additional diagrams:
For teaching scenarios in context of theoretical computer
science and compiler construction, a regular expression is
transformed in an equivalent automaton, which in turn
is visualized as an interactive node-link diagram [5, 8, 9].
Blackwell [4] investigates visual representations of regular
expressions in more detail and discusses three different ones:
an automaton-like graph representation, a hierarchically
structured natural language text, and a visual language
working with text and icons. In a software engineering
scenario where the regular expression always needs to be
represented as text, these visual representations consume
much space and lead to a repetitive representation of the
regular expression, which we try to avoid.

While research on developing and visualizing regular ex-
pressions is rare, many software tools are available. They
seem to enjoy quite some popularity and to satisfy a demand,

Figure 1: Interface of RegViz showing a (defective) regular expression for matching email addresses.

but systematic evaluations or research regarding their design
space is completely lacking. We want to highlight Debuggex1

and RegexBuddy2 as particularly visual tools (Goyvaerts
and Levithan [6] provide a more exhausitive list of tools).
Debuggex shows the regular expression as a graph diagram
additionally to representing it as color-coded text. Applying
it to a sample text, a slider can be used to synchronously
sweep through text and visualization; a list of tests can be
specified. RegexBuddy organizes the interface in multiple
views: additional to a color-coded regular expression, a
treeview shows the hierarchical structure of the expression
with nodes labeled in natural language; a debugging view
illustrates the matching process. In contrast to our approach,
Debuggex and RegexBuddy both require an additional repre-
sentation for visualizing the structure of a regular expression.

3. REGVIZ APPROACH
Our vision was to improve the readability of regular expres-

sions by enriching their textual notation with visual augmen-
tations as a part of an interactive testing environment. In
contrast to previous work, we wanted to avoid an additional
representation and the drawbacks discussed that go along
with it. We developed the RegViz approach and implemented
a prototype as a Web-based tool for JavaScript regular
expressions. The software itself is written in JavaScript
and its visual appearance is specified in CSS. The full user
interface is depicted in Figure 1 visualizing a complex regular
expression for matching email addresses. The interface is
split into three parts: At the top, a text area shows a visually
augmented regular expression, which is editable like plain
text though being surrounded by visual elements. Below, a
sample text with specified tests can be inserted; the regular

1https://www.debuggex.com/
2http://www.regexbuddy.com/

expression is applied to this text and matches are visualized.
Finally, a legend on the right side explains the encoding.

3.1 Visually Augmented Regular Expressions
The heart of the approach is the visual enrichment of

regular expressions. The design as illustrated in Figure 1 high-
lights the structure of a regular expression mainly through
horizontal lines top and bottom of the expression and dis-
cerns special-purpose tokens by color. In the following, we
enumerate the syntactic constituents of regular expressions,
recapitulate their use, and comment on our design decisions
for each.

One of the most important augmentations are those that
clarify the structure of a regular expressions—something
that is nearly concealed in its plain-text representation.
First, regular expressions include parentheses to group tokens
within the expression; these capturing groups can be used for
referencing (matched) parts of the regular expression when
postprocessing the matches. In JavaScript, group ID $1 refers
to the first group (with respect to opening parentheses), $2 to
the second etc. Our tool exposes groups through horizontal
lines attached to the bottom of the expression. The stacking
of these lines reflects the nesting hierarchy of groups. The
start and end positions of a group are marked by vertical
lines and the group ID is provided below.

Another structural element in a regular expression is a
vertical bar character, which denotes the alternation operator:
either the subexpression to the left or right of the operator
has to be matched. We highlight this inconspicuous, yet
important token by using a light purple background.

Regular expressions further allow us to specify a number
of repeated consecutive matchings of the same subexpression.
This is denoted by postfixing this subexpression—which may
be a single character, a set of characters, or a group—with

a quantifier operator. A quantifier is any of , , , or a
range in curly brackets (e.g.,). A yellow horizontal
gradient identifies quantifier occurrences quite prominently.
The gradient is darker to the left to emphasize the association
with the left subexpression, i.e., the postfix character of
quantifiers. The range of a quantifier’s influence is visualized
by an additional yellow line above characters (e.g.,) and
character sets (e.g.,) and below groups (e.g.,).

An anchor specifies a position at which a match is allowed
to occur. Possible anchors are , , , or , indicating
the beginning or ending of a line or a word. A light blue
background clearly discerns anchors from other entities so
that they cannot be mistaken for plain characters. A related
concept is the lookahead, which defines the context that must
follow a match. A lookahead may be positive: (?=r), or
negative: (?!r), where r is again a regular expression. This
makes the lookahead a postfix operator of arbitrary com-
plexity. As illustrated in the following example, we visualize
lookahead subexpressions like a special group, marked by a
blue bottom line, which integrates into the nesting of groups.
The start and end of the lookahead are highlighted in light
blue to make them instantly distinguishable from start and
end of capturing groups.

Finally, the atomic building blocks of every regular expres-
sions are the specific characters that should be matched.
While most characters can be included in an expression ‘as
is’, some need to be escaped because they have a special
meaning otherwise. Both escaped and non-escaped plain
characters have a light gray background and are separated
by small white gaps (e.g.,). It is further possible to
specify sets, or classes, of characters in square brackets: we
visualize these by adding a top border to the subexpression
in square brackets (e.g.,). By starting the selection
with ^, character sets enumerate the characters that should
not be included; we use dark red instead of dark green for
the top border to indicate this kind of negative selection
(e.g.,). Certain frequently occurring classes are given
short placeholders. For example, denotes any character,

denotes a digit, represents every character but a digit,
etc. Those expressions are discerned from plain characters
by a slightly darker background color.

3.2 Visually Indicated Matches and Testing
The regular expression is applied to a sample text. If the

expression has valid syntax, all detected matches are marked
as gray boxes in the sample text. There matching mode
can be selected by the combo box next to the expression:
the flag g, for global, specifies that all matches should be
identified instead of just the first while flag i switches from
case-sensitive to case-insensitive mode.

Groups in regular expressions correspond to certain sub-
strings of the match. Programmers might use groups for
structuring the regular expression as well as for referencing
a part of a match. In the process of debugging a regular
expression, the group structure in the match could provide
details on an error in the expression. We thus visualize the
groups in the matches as well, using the same bottom lines
and labels that highlight the groups in the expression.

Due to alternation operators and quantifiers, it is possible
that some groups are not matched and represented within the
match (e.g., missing group $4 in the above example). Please
note that, in contrast to highlighting in regular expressions,
several groups may start at the same text positions; labels,
hence, need to be aggregated at these positions (e.g., $5-$8).
The representation of a group in the regular expressions is
connected to the representation of the same group in the
sample text through interaction: hovering the mouse over
the opening or closing parenthesis of the group in the regular
expression, the group markers are highlighted in blue color
in both the regular expression and the sample text.

We also integrated a simple testing feature into RegViz,
which—in contrast to Debuggex—does not require an addi-
tional view. A test is a user-defined substring of the sample
text, which should be matched by the regular expression. A
statistic above the sample text window summarizes how many
of the specified tests are matched and whether additional
matches (that do not cover specified tests) exist. Matched
tests in the sample text are marked with a green box, non-
matched tests with a red one. Tests can be added and
removed by marking the respective text with the mouse and
clicking the add or remove button next to the text field.
Theses tests are basically regression tests that are applied
whenever the regular expression is changed. They, hence,
could indicate that a change has introduced a new bug when
tests that matched before do not match anymore. As well,
users might specify tests in the sample text before writing the
regular expression—a form of test-driven development [3].

3.3 Application Example
Discussing RegViz in a realistic application, we take a

closer look at the email example in Figure 1. The regular
expression shows a slightly modified version of a solution
originally posted at stackoverflow.com by Peter Mortensen3.
The sample text that we use for testing consists of names
and addresses in various notations, also including a substring
that only looks like an email address (@email.contact). For
illustration purposes, we introduced a bug into the regular
expression such that not all email addresses in the sample
text are matched, but the fake email address is.

Although matching of email addresses sounds like a simple
problem, a generic solution is quite complex. The presented
variant consists of two main segments, which are quickly
identified by looking at the nesting structures of groups:
the local part of the address in front of @ (group $1) and
the domain part after (group $5). Either part is split by an
alternation operator: the local part either consist of sequences
of certain characters

separated by fullstops (group $2) or arbitrary characters
enclosed in quotation marks (group $4); the domain
part is either an IP address (group $6) or a resolved Internet
domain (group $7). Without visual augmentation, the ex-
ample is very difficult to read, not only because of its length
but also because non-escaped parentheses are used in sets as
plain characters (see character set above) and can be easily
mistaken for closing group parentheses.

In the sample text, all five email addresses are marked as
tests, but only three of them are matched correctly. The

3http://stackoverflow.com/questions/46155/
validate-email-address-in-javascript

highlighted groups within the matches reveal that all domain
parts of the addresses are identified correctly. A bug, hence,
should be in the local part, which is only partly matched in
two of the examples. These two examples have in common
that they consist of two words split by a fullstop—group $3

should have been matched, but—as the visualization reveals—
is not. The quantifier is missing after the character set
in group $3. Another issue is that the character sequence
is optional (), but should not be ()—this finally prevents
@email.contact to be matched. The fixed version of group
$2 and $3 is:

4. EXPERT FEEDBACK
We sent RegViz to colleagues who are either experts in

software engineering, visualization, or Web development and
asked for constructive feedback. The goal of this preliminary
evaluation was to collect educated opinions on strengths
and shortcomings of the approach as well as to get ideas
for future development. We provided unlimited access to
RegViz including several examples (combinations of regular
expressions, sample texts, and tests) and allowed the experts
to use the tool as long as they like. Our inquiry did not
dictate a specific task but just included a short questionnaire
to obtain semi-structured free-text feedback. Ten experts
replied, who we name E1–E10 in the following. We sum-
marize their general, high-level feedback but skip technical
details and minor comments.

In general, the experts seem to agree that the approach
is accessible as they describe it as “intuitive” (E1, E6, E7),
“clear” (E3, E5), “self-explaining” (E3), “easy to understand”
(E8), “helpful” (E2), or “useful” (E9, E10). Although we
only provided minimal explanations, none of the experts had
reasonable problems using the tool. Only secondary features
had not been totally clear to everybody, like testing (E5) or
different matching modes (E6, E9).

The visual augmentation, which discerns our approach
from others, is largely described as beneficial: All experts
except E1 explicitly mention the visual encoding of the
regular expressions as one of the main advantages of RegViz.
E3 and E4 also rate the highlighting of groups in the sample
text as particularly important; E2, E3, E5, E6, E9, and E10
highlight the testing features and visualization. Nevertheless,
also some doubts were raised on the extensive use of visuals:
in the opinion of some experts, the tool could be somewhat
overwhelming at first sight (E1, E9), some visual encodings
tend to hinder readability (E3), the visualization clutters the
display (E7, E8), or it consumes much space and attention
(E4).

Beyond requested minor improvements, the experts sug-
gested some larger extensions and application scenarios for
RegViz. One group of suggestions targets an improved
debugging like to visually explain a match in detail (E1), to
help finding out why something was not matched (E3), or to
support identifying the causes of syntax errors (E4). E2 and
E7 put forward the idea of marking substring as negative tests
that should not be matched. Extending editing features, E4,
E5, and E6 propose making the legend clickable so that users
can edit the regular expressions using these buttons. Also
integrating the tool into an IDE was suggested (E3, E4, E6),
or combining it with a graph-based visualization of regular
expressions (E4, E9). Besides being used by programmers

for software development, RegViz might also be leveraged
for teaching students (E1, E2, E9).

5. CONCLUSIONS AND FUTURE WORK
Filling the gap between visualization and textual notation,

we have presented the new idea of a hybrid approach for
representing regular expressions. Embedded into a envi-
ronment to test and debug these expressions, we call the
approach RegViz. Feedback collected from experts suggests
that RegViz is easy to use and helps understanding regular
expressions. In the near future, we plan to improve RegViz
according to the experts’ suggestions, in particular, to reduce
the visual load of the interface further. We also want to pick
up and implement the suggested extensions like explanations
of missed matches and an improved interactive editing of
regular expressions. The enhanced version will be made
publicly available on http://regviz.org.

6. ACKNOWLEDGMENTS
We thank all experts for their highly valuable feedback.

7. SOLUTION OF THE QUIZ
The regular expression presented in Section 1 matches text

in (non-nested) square brackets (group $1) or parentheses
(group $2).

8. REFERENCES
[1] F. Beck, F. Hollerich, S. Diehl, and D. Weiskopf. Visual

monitoring of numeric variables embedded in source
code. VISSOFT ’13: Proceedings of the 1st IEEE
Working Conference on Software Visualization, 2013.

[2] F. Beck, O. Moseler, S. Diehl, and G. D. Rey. In situ
understanding of performance bottlenecks through
visually augmented code. In ICPC ’13: Proceedings of
the 21st IEEE International Conference on Program
Comprehension, pages 63–72. IEEE, 2013.

[3] K. Beck. Test-Driven Development: By Example.
Addison-Wesley Professional, 2003.

[4] A. Blackwell. SWYN: A visual representation for regular
expressions. In Your Wish is My Command:
Programming by Example, pages 245–270. Morgan
Kauffman, 2001.

[5] B. Braune, S. Diehl, A. Kerren, and R. Wilhelm.
Animation of the generation and computation of finite
automata for learning software. Automata
Implementation, pages 39–47, 2001.

[6] J. Goyvaerts and S. Levithan. Regular Expressions
Cookbook. O’Reilly Media, 2009.

[7] M. Harward, W. Irwin, and N. Churcher. In situ
software visualisation. In ASWEC ’10: Proceedings of
the 21st Australian Software Engineering Conference,
pages 171–180. IEEE Computer Society, 2010.

[8] T. Hung and S. H. Rodger. Increasing visualization and
interaction in the automata theory course. ACM
SIGCSE Bulletin, 32(1):6–10, 2000.

[9] N. Moreira and R. Reis. Interactive manipulation of
regular objects with FAdo. ACM SIGCSE Bulletin,
37(3):335–339, 2005.

