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Evidence-based Practice  through Practice-based Evidence



Opinion vs. Evidence

• Opinion: “Increasing test coverage reduces the number of bugs.”
• Evidence: Wasting time testing simple code might even increase 

the number of bugs.
Article 1: https://ieeexplore.ieee.org/document/5315981
Article 2: https://dl.acm.org/doi/10.1109/ESEM.2017.44

• Opinion: “Test-driven development reduces number of bugs but 
increases development time.”
• Evidence: Supports the above statement.

Article: https://link.springer.com/article/10.1007/s10664-008-9062-z

4Sebastian Baltes - Empirical Software Engineering

https://ieeexplore.ieee.org/document/5315981
https://dl.acm.org/doi/10.1109/ESEM.2017.44
https://link.springer.com/article/10.1007/s10664-008-9062-z
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Evidence-based Practice  through Practice-based Evidence

Research Practice

informs

informs
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Implications:

1) Strong understanding of state of practice 
is essential

2) To reach this understanding, researchers 
need to utilize diverse empirical research 
methods and learn from other 
disciplines

3) To advance evidence-based practice, 
researchers need to invest effort into 
communicating findings back to 
practitioners

Evidence-based Practice  through Practice-based Evidence

Research Practice

informs

informs



7Sebastian Baltes - Empirical Software Engineering



Empirical Software Engineering

• Software Engineering:
Systematically building and maintaining software systems

• Software Engineering Research:
Systematically building and maintaining a body of knowledge about how 
to best build and maintain software systems, e.g., by exploring novel 
tools, process improvements, etc. 

• Empirical Software Engineering Research:
Software Engineering Research with a strong empirical focus, i.e., 
systematic observation/investigation of people and artifacts involved in 
software development 
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Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity

Empirical Software Engineering
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Examples
(own research)

Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity



Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity
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Sketching

FSE ‘14,
ESEM ‘15,
VISSOFT '17

Examples
(own research)



Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity
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Sketching

Code Plagiarism

FSE ‘14,
ESEM ‘15,
VISSOFT '17

EMSE ‘18,
MSR ‘18,
MSR ’19,
ICSE ‘20

Examples
(own research)



Empirical Research

Software Engineering
Stakeholders, Workflows, and 

Tools

Interdisciplinarity
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Sketching

Code Plagiarism

Pandemic 
Programming

FSE ‘14,
ESEM ‘15,
VISSOFT '17

EMSE ‘18,
MSR ‘18,
MSR ’19,
ICSE ‘20

EMSE ‘20

Examples
(own research)
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Let’s started with a 
first exemplary study



17. June 2021 on Hacker News
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Code Plagiarism

Publications:
EMSE 2018, MSR 2018, MSR 2019, ICSE 2020 NIER



Code Plagiarism: Takeaways for Devs

• Software licensing is a complex topic, a general 
understanding of permissive vs. copyleft licenses is 
essential 

• Implications of license violations for 
companies/individuals can be severe

•We can use data mining techniques to detect and 
quantify code plagiarism from Stack Overflow – so 
others can do this as well!
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Source of snippet Reference to JDK

Post edits Reasons for edits

Code snippet
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https://christianheilmann.com/2015/07/17/the-full-stackoverflow-developer/

https://twitter.com/ThePracticalDev/status/705825638851149824

https://christianheilmann.com/2015/07/17/the-full-stackoverflow-developer/
https://twitter.com/ThePracticalDev/status/705825638851149824


Research Design

Question:
How frequently is code from Stack Overflow posts used in 
public GitHub projects without the required attribution?

Method:
Triangulation of an estimate for the attribution ratio using 
three different data mining approaches.
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Code Plagiarism

Article: https://link.springer.com/article/10.1007/s10664-018-9650-5

https://link.springer.com/article/10.1007/s10664-018-9650-5


Question for the Audience

Who knew that all content on Stack Overflow is 
licensed under CC BY-SA?
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Attribution Share-alike

"You must give 
appropriate credit […] 
and indicate if changes 
were made."

“If you […] build upon the 
material, you must distribute 
your contri-butions under 
the same license as the 
original.”

Code Plagiarism



Background

“Well, but these snippets are rather trivial and 
not protected by copyright.”
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• Not all snippets on Stack Overflow copyrightable, but some 
experts argue that the threshold is low
[Engelfriet 2016]

• No “international standard for originality”
[Creative Commons 2017b]

• CC BY-SA is a viral copyleft license, affecting all modifications and 
derived works
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Permissive Licenses

• Permit using the licensed source code in 
proprietary software without publishing 
changes or the derived work

• Examples: MIT, Apache, and BSD license 
families

Copyleft Licenses

• Requires either modifications to the 
licensed content or the complete 
derived work to be published under the 
same or a compatible license (share-
alike)

• Examples (weak copyleft): 
Mozilla/Eclipse Public Licenses

• Examples (viral copyleft): GNU General 
Public Licenses, Creative Commons 
Share-Alike Licenses (e.g., CC BY-SA)

Implications of Stack Overflow’s License
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Enforceability of Copyleft Licenses

25Sebastian Baltes - Empirical Software Engineering

• Courts in the US and Europe ruled that open-source licenses are 
enforceable contracts

• Authors can sue when terms such as the share-alike requirement are 
violated:
• Interdict distribution of derived work
• Claim monetary damages

• USA: DMCA takedown notices for allegedly infringed copyright
• Example: https://github.com/github/dmca

• Risk in mergers and acquisitions of companies
• Example: FSF vs. Cisco lawsuit

https://github.com/github/dmca
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https://github.com/pacosal/ownmdm/blob/master/src/com/pacosal/mdm/MyLocation.java


Triangulated Attribution Ratio

28Sebastian Baltes - Empirical Software Engineering

1. Exploratory study

2. Code clone detector study

3. Exact matches study

Question: How frequently is 
code from Stack Overflow posts 
used in public GitHub projects 
without the required 
attribution?

Code Plagiarism

<latexit sha1_base64="Qc5aX9R29/pwIkJShlJ9Gl2qpJM=">AAACPnicbVBLSwMxGMz6rPVV9eglWARPZVdEvQjFXjxWsA/oliWbzbah2QfJt2JZ95d58Td48+jFgyJePZpuF9HWgcBkZj6Sb9xYcAWm+WwsLC4tr6yW1srrG5tb25Wd3baKEklZi0Yikl2XKCZ4yFrAQbBuLBkJXME67qgx8Tu3TCoehTcwjlk/IIOQ+5wS0JJTadkukanMHBvYHaQEQGb4Atu+JDTF97hRGCrK9C2blWyaxD+Cl8R5yLadStWsmTnwPLEKUkUFmk7lyfYimgQsBCqIUj3LjKGfEgmcCpaV7USxmNARGbCepiEJmOqn+foZPtSKh/1I6hMCztXfEykJlBoHrk4GBIZq1puI/3m9BPzzfsrDOAEW0ulDfiIwRHjSJfa4ZBTEWBNCJdd/xXRIdHOgGy/rEqzZledJ+7hmndbM65Nq/bKoo4T20QE6QhY6Q3V0hZqohSh6QC/oDb0bj8ar8WF8TqMLRjGzh/7A+PoGVfawXw==</latexit>

r̄attr =
|Cso|

|Cso [ Cdup|

We used popularity and length of the snippets as a proxy for 
originality and checked external availability.



Attribution

Attribution ratio:
•Method 1 (regular expressions):
•Method 2 (code clone detector):
•Method 3 (exact matches):

Conservative estimate:
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Code Plagiarism

<latexit sha1_base64="51SkgcAUnXfJwDC+uymEtepmTnk=">AAACA3icbVC7SgNBFJ31GeNrVbDQZjAErMJuBLURQmwsEzAPyC5hdjKbDJl9MHNXDEvAxl+xEVHE1s4vsLPxW5w8Ck08cOFwzr3ce48XC67Asr6MhcWl5ZXVzFp2fWNza9vc2a2rKJGU1WgkItn0iGKCh6wGHARrxpKRwBOs4fUvR37jhknFo/AaBjFzA9INuc8pAS21zQPHIzKVw7YD7BZSAiCH+AIXT5x828xZBWsMPE/sKcmV9qvf/Kn8UWmbn04noknAQqCCKNWyrRjclEjgVLBh1kkUiwntky5raRqSgCk3Hf8wxHmtdLAfSV0h4LH6eyIlgVKDwNOdAYGemvVG4n9eKwH/3E15GCfAQjpZ5CcCQ4RHgeAOl4yCGGhCqOT6Vkx7RBIKOrasDsGefXme1IsF+7RgVXUaZTRBBh2iI3SMbHSGSugKVVANUXSHHtAzejHujUfj1XibtC4Y05k99AfG+w8r25ri</latexit>

r̄attr = 23%
<latexit sha1_base64="CVNTOBk4Amad1QvSk/cOrAAOxSU=">AAACA3icbVC7SgNBFJ31GeNrVbDQZjAErMJuELURQmwsEzAPyC5hdjKbDJl9MHNXDEvAxl+xEVHE1s4vsLPxW5w8Ck08cOFwzr3ce48XC67Asr6MhcWl5ZXVzFp2fWNza9vc2a2rKJGU1WgkItn0iGKCh6wGHARrxpKRwBOs4fUvR37jhknFo/AaBjFzA9INuc8pAS21zQPHIzKVw7YD7BZSAiCH+AIXT5x828xZBWsMPE/sKcmV9qvf/Kn8UWmbn04noknAQqCCKNWyrRjclEjgVLBh1kkUiwntky5raRqSgCk3Hf8wxHmtdLAfSV0h4LH6eyIlgVKDwNOdAYGemvVG4n9eKwH/3E15GCfAQjpZ5CcCQ4RHgeAOl4yCGGhCqOT6Vkx7RBIKOrasDsGefXme1IsF+7RgVXUaZTRBBh2iI3SMbHSGSugKVVANUXSHHtAzejHujUfj1XibtC4Y05k99AfG+w8tYZrj</latexit>

r̄attr = 24%
<latexit sha1_base64="cdlp2spQ5p73xAgSVSIh4oOLeDA=">AAACAnicbVC7SgNBFJ2Nrxhfq4IgNoMhYBV2LTSNEGJjmYB5QHYJs5PZZMjsg5m7YliCjb9iI6iIraVfYGfjtzh5FJp44MLhnHu59x4vFlyBZX0ZmaXlldW17HpuY3Nre8fc3WuoKJGU1WkkItnyiGKCh6wOHARrxZKRwBOs6Q0ux37zhknFo/AahjFzA9ILuc8pAS11zEPHIzKVo44D7BZSAiBH+AKXnELHzFtFawK8SOwZyZcPat/8qfJR7ZifTjeiScBCoIIo1batGNyUSOBUsFHOSRSLCR2QHmtrGpKAKTedvDDCBa10sR9JXSHgifp7IiWBUsPA050Bgb6a98bif147Ab/kpjyME2AhnS7yE4EhwuM8cJdLRkEMNSFUcn0rpn0iCQWdWk6HYM+/vEgap0X7rGjVdBoVNEUWHaFjdIJsdI7K6ApVUR1RdIce0DN6Me6NR+PVeJu2ZozZzD76A+P9B7kumqs=</latexit>

r̄attr = 8%

<latexit sha1_base64="3R1KxPATFIPjsxfPv6Iz0xgzr1Y=">AAACBXicbVC7SgNBFJ2Nrxhfq4KNFoMhYBV2Az5K0cYyAaNCNoTZyd1kyOyDmbtiWLax8VdsUihia+MX2Nn4LU4SC18HLhzOuZd77/ETKTQ6zrtVmJmdm18oLpaWlldW1+z1jQsdp4pDk8cyVlc+0yBFBE0UKOEqUcBCX8KlPzgd+5fXoLSIo3McJtAOWS8SgeAMjdSxdzyfqUzlHQ/hBjOGqHLqSaC1fa/SsctO1ZmA/iXuFykfbzU+xOjktd6x37xuzNMQIuSSad1ynQTbGVMouIS85KUaEsYHrActQyMWgm5nky9yWjFKlwaxMhUhnajfJzIWaj0MfdMZMuzr395Y/M9rpRgctTMRJSlCxKeLglRSjOk4EtoVCjjKoSGMK2FupbzPFONogiuZENzfL/8lF7Wqe1B1GiaNEzJFkWyTXbJHXHJIjskZqZMm4eSW3JMH8mjdWSPryXqethasr5lN8gPWyyf7kpvo</latexit>

r̄attr  25%



Share-alike

Only 2% of all analyzed repositories (methods 1-3) 
containing code from Stack Overflow attributed its source 
and used a compatible license.
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Code Plagiarism



Reaching out to Developers
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• Contacted owners of GitHub repositories 
containing copies of Stack Overflow snippets

• 75% not aware of CC BY-SA licensing

•Many thankful responses

Code Plagiarism



Stack Overflow Code in the OpenJDK
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https://bugs.openjdk.java.net/browse/JDK-8170860

https://bugs.openjdk.java.net/browse/JDK-8170860
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Summary
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Triangulation using three 
data mining approaches, 
online survey, (qualit. 
analysis) 

Research on worldwide 
copyright and licensing 
legislation, exemplary 
cases

Quantification of code 
plagiarism in open-source 
projects, outreach to 
developers 

Code Plagiarism
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Let’s continue with 
a second example



Code Reviews: Takeaways for Devs

•Many of the challenges around code review are 
non-technical

• Constant (systematic) reflection on own code 
review process is important

• Knowing challenges helps deriving 
solutions/mitigations
(details later)
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Empirical SE at Microsoft: Code Reviews
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Article: https://ieeexplore.ieee.org/abstract/document/7950877

https://ieeexplore.ieee.org/abstract/document/7950877


Why study Code Reviewing?

• “Code reviews are straight-forward to do and tool support exists, problem 
solved.”

• Really? Some things to consider:
• Level of detail (code style vs. semantic issues)
• Code criticism turns into personal criticism
• Large changes à LGTM
• Code review ping pong
• etc.

• Empirical research can help distilling antipatterns, best practices, and 
requirements for improved tool support
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Code Reviewing Study at Microsoft

• Focus on four teams
(newcomers, senior developers, team leads)

• Wide range of projects
(legacy vs. new, internal vs. external)

• Ethnographic study
(observing developers in their workplace for one week/team)

• Semi-structured interviews directly after code reviewing activities
• 18 developers

• Follow-up survey with broader set of developers
(validate initial findings)
• 911 responses
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Code Reviewing at Microsoft

• Process (shared by all teams, internal tooling):
• Preparation of code to be reviewed
• Selection of reviewers (automatically or manually, varying selection 

requirements)
• Notification of selected reviewer(s)
• Review of code, sharing feedback with author(s)
• Iteration (communication between authors and reviewers)
• Merge code (sometimes before review)
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Code Reviewing at Microsoft

• Developers recognize value of code reviews
• Are more thorough when they know code is reviewed
• More confidence in reviewed code
• Not all teams had explicit rules/policies around code reviews
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Code Reviewing at Microsoft

• Communication between 
authors and reviewers usually 
within tool
• Controversial issues discussed 

via other channels
(face-to-face, video conference, instant 
messaging, etc.)
à no public blaming
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Code Reviewing Challenges: Authors

• Getting timely feedback
(authors must constantly remind reviewers)

• Getting insightful feedback
(focus on insignificant details rather than larger issues)

• Finding suitable/willing reviewers

• Getting a change rejected without
enough feedback

• Communication in tool slows down, but
other communication is often ephemeral
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Code Reviewing Challenges: Reviewers

• Reviewing large changes

• Balancing writing new code vs. reviewing others’ code

• Understanding code’s purpose, motivation, implementation

• Finding relevant documentation

• Lack of appreciation

• Missing training
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Code Reviewing 
Best Practices
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One more thing…



Selection of Empirical SE Courses

• University or Toronto, Canada
http://www.cs.toronto.edu/~sme/CSC2130/index.html

• Carnegie Mellon University, USA
https://github.com/bvasiles/empirical-methods

• University of Victoria, Canada
https://github.com/margaretstorey/EmseUvic2020

• Eindhoven University of Technology, Netherlands
https://www.youtube.com/watch?v=34hcH7Js41I&list=PLmAXH4O57P5
_0IflYjLIg8l0IupZPbdlY
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http://www.cs.toronto.edu/~sme/CSC2130/index.html
https://github.com/bvasiles/empirical-methods
https://github.com/margaretstorey/EmseUvic2020
https://www.youtube.com/watch?v=34hcH7Js41I&list=PLmAXH4O57P5_0IflYjLIg8l0IupZPbdlY


Dr. Sebastian Baltes
empirical-software.engineering

@s_baltes

Questions?


