
@s_baltes
Dr. Sebastian Baltes

empirical-software.engineering

Empirical Software Engineering
Opinion vs. Evidence in Software Development

Interaction

1Sebastian Baltes - Empirical Software Engineering

My Background

2Sebastian Baltes - Empirical Software Engineering

Senior Software Developer
SAP SE

Walldorf, Germany

Adjunct Lecturer
University of Adelaide
Adelaide, Australia

3Sebastian Baltes - Empirical Software Engineering

Evidence-based Practice through Practice-based Evidence

Opinion vs. Evidence

• Opinion: “Increasing test coverage reduces the number of bugs.”
• Evidence: Wasting time testing simple code might even increase

the number of bugs.
Article 1: https://ieeexplore.ieee.org/document/5315981
Article 2: https://dl.acm.org/doi/10.1109/ESEM.2017.44

• Opinion: “Test-driven development reduces number of bugs but
increases development time.”
• Evidence: Supports the above statement.

Article: https://link.springer.com/article/10.1007/s10664-008-9062-z

4Sebastian Baltes - Empirical Software Engineering

https://ieeexplore.ieee.org/document/5315981
https://dl.acm.org/doi/10.1109/ESEM.2017.44
https://link.springer.com/article/10.1007/s10664-008-9062-z

5Sebastian Baltes - Empirical Software Engineering

Evidence-based Practice through Practice-based Evidence

Research Practice

informs

informs

6Sebastian Baltes - Empirical Software Engineering

Implications:

1) Strong understanding of state of practice
is essential

2) To reach this understanding, researchers
need to utilize diverse empirical research
methods and learn from other
disciplines

3) To advance evidence-based practice,
researchers need to invest effort into
communicating findings back to
practitioners

Evidence-based Practice through Practice-based Evidence

Research Practice

informs

informs

7Sebastian Baltes - Empirical Software Engineering

Empirical Software Engineering

• Software Engineering:
Systematically building and maintaining software systems

• Software Engineering Research:
Systematically building and maintaining a body of knowledge about how
to best build and maintain software systems, e.g., by exploring novel
tools, process improvements, etc.

• Empirical Software Engineering Research:
Software Engineering Research with a strong empirical focus, i.e.,
systematic observation/investigation of people and artifacts involved in
software development

8Sebastian Baltes - Empirical Software Engineering

9Sebastian Baltes - Empirical Software Engineering

Empirical Research

Software Engineering
Stakeholders, Workflows, and

Tools

Interdisciplinarity

Empirical Software Engineering

10Sebastian Baltes - Empirical Software Engineering

Examples
(own research)

Empirical Research

Software Engineering
Stakeholders, Workflows, and

Tools

Interdisciplinarity

Empirical Research

Software Engineering
Stakeholders, Workflows, and

Tools

Interdisciplinarity

11Sebastian Baltes - Empirical Software Engineering

Sketching

FSE ‘14,
ESEM ‘15,
VISSOFT '17

Examples
(own research)

Empirical Research

Software Engineering
Stakeholders, Workflows, and

Tools

Interdisciplinarity

12Sebastian Baltes - Empirical Software Engineering

Sketching

Code Plagiarism

FSE ‘14,
ESEM ‘15,
VISSOFT '17

EMSE ‘18,
MSR ‘18,
MSR ’19,
ICSE ‘20

Examples
(own research)

Empirical Research

Software Engineering
Stakeholders, Workflows, and

Tools

Interdisciplinarity

13Sebastian Baltes - Empirical Software Engineering

Sketching

Code Plagiarism

Pandemic
Programming

FSE ‘14,
ESEM ‘15,
VISSOFT '17

EMSE ‘18,
MSR ‘18,
MSR ’19,
ICSE ‘20

EMSE ‘20

Examples
(own research)

14Sebastian Baltes - Empirical Software Engineering

Let’s started with a
first exemplary study

17. June 2021 on Hacker News

15Sebastian Baltes - Empirical Software Engineering

16Sebastian Baltes - Empirical Software Engineering

Code Plagiarism

Publications:
EMSE 2018, MSR 2018, MSR 2019, ICSE 2020 NIER

Code Plagiarism: Takeaways for Devs

• Software licensing is a complex topic, a general
understanding of permissive vs. copyleft licenses is
essential

• Implications of license violations for
companies/individuals can be severe

•We can use data mining techniques to detect and
quantify code plagiarism from Stack Overflow – so
others can do this as well!

17Sebastian Baltes - Empirical Software Engineering

19Sebastian Baltes - Empirical Software Engineering

Source of snippet Reference to JDK

Post edits Reasons for edits

Code snippet

20Sebastian Baltes - Empirical Software Engineering

https://christianheilmann.com/2015/07/17/the-full-stackoverflow-developer/

https://twitter.com/ThePracticalDev/status/705825638851149824

https://christianheilmann.com/2015/07/17/the-full-stackoverflow-developer/
https://twitter.com/ThePracticalDev/status/705825638851149824

Research Design

Question:
How frequently is code from Stack Overflow posts used in
public GitHub projects without the required attribution?

Method:
Triangulation of an estimate for the attribution ratio using
three different data mining approaches.

21Sebastian Baltes - Empirical Software Engineering

Code Plagiarism

Article: https://link.springer.com/article/10.1007/s10664-018-9650-5

https://link.springer.com/article/10.1007/s10664-018-9650-5

Question for the Audience

Who knew that all content on Stack Overflow is
licensed under CC BY-SA?

22Sebastian Baltes - Empirical Software Engineering

Attribution Share-alike

"You must give
appropriate credit […]
and indicate if changes
were made."

“If you […] build upon the
material, you must distribute
your contri-butions under
the same license as the
original.”

Code Plagiarism

Background

“Well, but these snippets are rather trivial and
not protected by copyright.”

23Sebastian Baltes - Empirical Software Engineering

• Not all snippets on Stack Overflow copyrightable, but some
experts argue that the threshold is low
[Engelfriet 2016]

• No “international standard for originality”
[Creative Commons 2017b]

• CC BY-SA is a viral copyleft license, affecting all modifications and
derived works

ht
tp
:/
/t
he

co
nv
er
sa
tio

n.
co
m
/w

hy
-u
ni
ve
rs
iti
es
-c
an

t-
be

-e
xp
ec
te
d-
to
-p
ol
ic
e-
co
py
rig

ht
-in

fr
in
ge
m
en

t-8
26
77

Code Plagiarism

Permissive Licenses

• Permit using the licensed source code in
proprietary software without publishing
changes or the derived work

• Examples: MIT, Apache, and BSD license
families

Copyleft Licenses

• Requires either modifications to the
licensed content or the complete
derived work to be published under the
same or a compatible license (share-
alike)

• Examples (weak copyleft):
Mozilla/Eclipse Public Licenses

• Examples (viral copyleft): GNU General
Public Licenses, Creative Commons
Share-Alike Licenses (e.g., CC BY-SA)

Implications of Stack Overflow’s License

24Sebastian Baltes - Empirical Software Engineering

Enforceability of Copyleft Licenses

25Sebastian Baltes - Empirical Software Engineering

• Courts in the US and Europe ruled that open-source licenses are
enforceable contracts

• Authors can sue when terms such as the share-alike requirement are
violated:
• Interdict distribution of derived work
• Claim monetary damages

• USA: DMCA takedown notices for allegedly infringed copyright
• Example: https://github.com/github/dmca

• Risk in mergers and acquisitions of companies
• Example: FSF vs. Cisco lawsuit

https://github.com/github/dmca

26Sebastian Baltes - Empirical Software Engineeringhttps://stackoverflow.com/a/3145655 ht
tp

s:
//

gi
th

ub
.c

om
/p

ac
os

al
/o

w
nm

dm
/b

lo
b/

m
as

te
r/

sr
c/

co
m

/p
ac

os
al

/m
dm

/M
yL

oc
at

io
n.

ja
va

https://stackoverflow.com/a/3145655
https://github.com/pacosal/ownmdm/blob/master/src/com/pacosal/mdm/MyLocation.java

Triangulated Attribution Ratio

28Sebastian Baltes - Empirical Software Engineering

1. Exploratory study

2. Code clone detector study

3. Exact matches study

Question: How frequently is
code from Stack Overflow posts
used in public GitHub projects
without the required
attribution?

Code Plagiarism

<latexit sha1_base64="Qc5aX9R29/pwIkJShlJ9Gl2qpJM=">AAACPnicbVBLSwMxGMz6rPVV9eglWARPZVdEvQjFXjxWsA/oliWbzbah2QfJt2JZ95d58Td48+jFgyJePZpuF9HWgcBkZj6Sb9xYcAWm+WwsLC4tr6yW1srrG5tb25Wd3baKEklZi0Yikl2XKCZ4yFrAQbBuLBkJXME67qgx8Tu3TCoehTcwjlk/IIOQ+5wS0JJTadkukanMHBvYHaQEQGb4Atu+JDTF97hRGCrK9C2blWyaxD+Cl8R5yLadStWsmTnwPLEKUkUFmk7lyfYimgQsBCqIUj3LjKGfEgmcCpaV7USxmNARGbCepiEJmOqn+foZPtSKh/1I6hMCztXfEykJlBoHrk4GBIZq1puI/3m9BPzzfsrDOAEW0ulDfiIwRHjSJfa4ZBTEWBNCJdd/xXRIdHOgGy/rEqzZledJ+7hmndbM65Nq/bKoo4T20QE6QhY6Q3V0hZqohSh6QC/oDb0bj8ar8WF8TqMLRjGzh/7A+PoGVfawXw==</latexit>

r̄attr =
|Cso|

|Cso [Cdup|

We used popularity and length of the snippets as a proxy for
originality and checked external availability.

Attribution

Attribution ratio:
•Method 1 (regular expressions):
•Method 2 (code clone detector):
•Method 3 (exact matches):

Conservative estimate:

33Sebastian Baltes - Empirical Software Engineering

Code Plagiarism

<latexit sha1_base64="51SkgcAUnXfJwDC+uymEtepmTnk=">AAACA3icbVC7SgNBFJ31GeNrVbDQZjAErMJuBLURQmwsEzAPyC5hdjKbDJl9MHNXDEvAxl+xEVHE1s4vsLPxW5w8Ck08cOFwzr3ce48XC67Asr6MhcWl5ZXVzFp2fWNza9vc2a2rKJGU1WgkItn0iGKCh6wGHARrxpKRwBOs4fUvR37jhknFo/AaBjFzA9INuc8pAS21zQPHIzKVw7YD7BZSAiCH+AIXT5x828xZBWsMPE/sKcmV9qvf/Kn8UWmbn04noknAQqCCKNWyrRjclEjgVLBh1kkUiwntky5raRqSgCk3Hf8wxHmtdLAfSV0h4LH6eyIlgVKDwNOdAYGemvVG4n9eKwH/3E15GCfAQjpZ5CcCQ4RHgeAOl4yCGGhCqOT6Vkx7RBIKOrasDsGefXme1IsF+7RgVXUaZTRBBh2iI3SMbHSGSugKVVANUXSHHtAzejHujUfj1XibtC4Y05k99AfG+w8r25ri</latexit>

r̄attr = 23%
<latexit sha1_base64="CVNTOBk4Amad1QvSk/cOrAAOxSU=">AAACA3icbVC7SgNBFJ31GeNrVbDQZjAErMJuELURQmwsEzAPyC5hdjKbDJl9MHNXDEvAxl+xEVHE1s4vsLPxW5w8Ck08cOFwzr3ce48XC67Asr6MhcWl5ZXVzFp2fWNza9vc2a2rKJGU1WgkItn0iGKCh6wGHARrxpKRwBOs4fUvR37jhknFo/AaBjFzA9INuc8pAS21zQPHIzKVw7YD7BZSAiCH+AIXT5x828xZBWsMPE/sKcmV9qvf/Kn8UWmbn04noknAQqCCKNWyrRjclEjgVLBh1kkUiwntky5raRqSgCk3Hf8wxHmtdLAfSV0h4LH6eyIlgVKDwNOdAYGemvVG4n9eKwH/3E15GCfAQjpZ5CcCQ4RHgeAOl4yCGGhCqOT6Vkx7RBIKOrasDsGefXme1IsF+7RgVXUaZTRBBh2iI3SMbHSGSugKVVANUXSHHtAzejHujUfj1XibtC4Y05k99AfG+w8tYZrj</latexit>

r̄attr = 24%
<latexit sha1_base64="cdlp2spQ5p73xAgSVSIh4oOLeDA=">AAACAnicbVC7SgNBFJ2Nrxhfq4IgNoMhYBV2LTSNEGJjmYB5QHYJs5PZZMjsg5m7YliCjb9iI6iIraVfYGfjtzh5FJp44MLhnHu59x4vFlyBZX0ZmaXlldW17HpuY3Nre8fc3WuoKJGU1WkkItnyiGKCh6wOHARrxZKRwBOs6Q0ux37zhknFo/AahjFzA9ILuc8pAS11zEPHIzKVo44D7BZSAiBH+AKXnELHzFtFawK8SOwZyZcPat/8qfJR7ZifTjeiScBCoIIo1batGNyUSOBUsFHOSRSLCR2QHmtrGpKAKTedvDDCBa10sR9JXSHgifp7IiWBUsPA050Bgb6a98bif147Ab/kpjyME2AhnS7yE4EhwuM8cJdLRkEMNSFUcn0rpn0iCQWdWk6HYM+/vEgap0X7rGjVdBoVNEUWHaFjdIJsdI7K6ApVUR1RdIce0DN6Me6NR+PVeJu2ZozZzD76A+P9B7kumqs=</latexit>

r̄attr = 8%

<latexit sha1_base64="3R1KxPATFIPjsxfPv6Iz0xgzr1Y=">AAACBXicbVC7SgNBFJ2Nrxhfq4KNFoMhYBV2Az5K0cYyAaNCNoTZyd1kyOyDmbtiWLax8VdsUihia+MX2Nn4LU4SC18HLhzOuZd77/ETKTQ6zrtVmJmdm18oLpaWlldW1+z1jQsdp4pDk8cyVlc+0yBFBE0UKOEqUcBCX8KlPzgd+5fXoLSIo3McJtAOWS8SgeAMjdSxdzyfqUzlHQ/hBjOGqHLqSaC1fa/SsctO1ZmA/iXuFykfbzU+xOjktd6x37xuzNMQIuSSad1ynQTbGVMouIS85KUaEsYHrActQyMWgm5nky9yWjFKlwaxMhUhnajfJzIWaj0MfdMZMuzr395Y/M9rpRgctTMRJSlCxKeLglRSjOk4EtoVCjjKoSGMK2FupbzPFONogiuZENzfL/8lF7Wqe1B1GiaNEzJFkWyTXbJHXHJIjskZqZMm4eSW3JMH8mjdWSPryXqethasr5lN8gPWyyf7kpvo</latexit>

r̄attr  25%

Share-alike

Only 2% of all analyzed repositories (methods 1-3)
containing code from Stack Overflow attributed its source
and used a compatible license.

34Sebastian Baltes - Empirical Software Engineering

Code Plagiarism

Reaching out to Developers

35Sebastian Baltes - Empirical Software Engineering

• Contacted owners of GitHub repositories
containing copies of Stack Overflow snippets

• 75% not aware of CC BY-SA licensing

•Many thankful responses

Code Plagiarism

Stack Overflow Code in the OpenJDK

37Sebastian Baltes - Empirical Software Engineering

https://bugs.openjdk.java.net/browse/JDK-8170860

https://bugs.openjdk.java.net/browse/JDK-8170860

38

Summary

Sebastian Baltes - Empirical Software Engineering

Triangulation using three
data mining approaches,
online survey, (qualit.
analysis)

Research on worldwide
copyright and licensing
legislation, exemplary
cases

Quantification of code
plagiarism in open-source
projects, outreach to
developers

Code Plagiarism

39Sebastian Baltes - Empirical Software Engineering

Let’s continue with
a second example

Code Reviews: Takeaways for Devs

•Many of the challenges around code review are
non-technical

• Constant (systematic) reflection on own code
review process is important

• Knowing challenges helps deriving
solutions/mitigations
(details later)

40Sebastian Baltes - Empirical Software Engineering

Empirical SE at Microsoft: Code Reviews

41Sebastian Baltes - Empirical Software Engineering

Article: https://ieeexplore.ieee.org/abstract/document/7950877

https://ieeexplore.ieee.org/abstract/document/7950877

Why study Code Reviewing?

• “Code reviews are straight-forward to do and tool support exists, problem
solved.”

• Really? Some things to consider:
• Level of detail (code style vs. semantic issues)
• Code criticism turns into personal criticism
• Large changes à LGTM
• Code review ping pong
• etc.

• Empirical research can help distilling antipatterns, best practices, and
requirements for improved tool support

43Sebastian Baltes - Empirical Software Engineering

Code Reviewing Study at Microsoft

• Focus on four teams
(newcomers, senior developers, team leads)

• Wide range of projects
(legacy vs. new, internal vs. external)

• Ethnographic study
(observing developers in their workplace for one week/team)

• Semi-structured interviews directly after code reviewing activities
• 18 developers

• Follow-up survey with broader set of developers
(validate initial findings)
• 911 responses

44Sebastian Baltes - Empirical Software Engineering

Code Reviewing at Microsoft

• Process (shared by all teams, internal tooling):
• Preparation of code to be reviewed
• Selection of reviewers (automatically or manually, varying selection

requirements)
• Notification of selected reviewer(s)
• Review of code, sharing feedback with author(s)
• Iteration (communication between authors and reviewers)
• Merge code (sometimes before review)

45Sebastian Baltes - Empirical Software Engineering

Code Reviewing at Microsoft

• Developers recognize value of code reviews
• Are more thorough when they know code is reviewed
• More confidence in reviewed code
• Not all teams had explicit rules/policies around code reviews

46Sebastian Baltes - Empirical Software Engineering

Code Reviewing at Microsoft

• Communication between
authors and reviewers usually
within tool
• Controversial issues discussed

via other channels
(face-to-face, video conference, instant
messaging, etc.)
à no public blaming

47Sebastian Baltes - Empirical Software Engineering

Code Reviewing Challenges: Authors

• Getting timely feedback
(authors must constantly remind reviewers)

• Getting insightful feedback
(focus on insignificant details rather than larger issues)

• Finding suitable/willing reviewers

• Getting a change rejected without
enough feedback

• Communication in tool slows down, but
other communication is often ephemeral

48Sebastian Baltes - Empirical Software Engineering

Code Reviewing Challenges: Reviewers

• Reviewing large changes

• Balancing writing new code vs. reviewing others’ code

• Understanding code’s purpose, motivation, implementation

• Finding relevant documentation

• Lack of appreciation

• Missing training

49Sebastian Baltes - Empirical Software Engineering

Code Reviewing
Best Practices

50Sebastian Baltes - Empirical Software Engineering

51Sebastian Baltes - Empirical Software Engineering

One more thing…

Selection of Empirical SE Courses

• University or Toronto, Canada
http://www.cs.toronto.edu/~sme/CSC2130/index.html

• Carnegie Mellon University, USA
https://github.com/bvasiles/empirical-methods

• University of Victoria, Canada
https://github.com/margaretstorey/EmseUvic2020

• Eindhoven University of Technology, Netherlands
https://www.youtube.com/watch?v=34hcH7Js41I&list=PLmAXH4O57P5
_0IflYjLIg8l0IupZPbdlY

52Sebastian Baltes - Empirical Software Engineering

http://www.cs.toronto.edu/~sme/CSC2130/index.html
https://github.com/bvasiles/empirical-methods
https://github.com/margaretstorey/EmseUvic2020
https://www.youtube.com/watch?v=34hcH7Js41I&list=PLmAXH4O57P5_0IflYjLIg8l0IupZPbdlY

Dr. Sebastian Baltes
empirical-software.engineering

@s_baltes

Questions?

