Expertise in Software Engineering

What can we learn from research in psychology?

Dr. Sebastian Baltes

YW @s_baltes
4" empirical-software.engineering

Software Development Expertise?

Implementing Algorithms &
new features data structures

Testing

Communication

Debugging

Sebastian Baltes — Software Developers' Work Habits and Expertise (GI-SE 01/2020)

Software Development Expertise?

S 5
v Implementing J)= Algorithms &
& @ @

new features Data structures

Unit . gbehave
JUnit@ Testing S
. g)iﬁ Communication t‘
~ Debugging
QO

Sebastian Baltes — Software Developers' Work Habits and Expertise (GI-SE 01/2020) 2

—t S o -
T T T o i

Bt

wl\‘_‘ ..
7 7 F g5

Which factors influence expertise

development over time?

3 ¥ ¥

\
(

Definitions

An expert is someone “with the special skill or
knowledge representing mastery of a
particular subject”

Expertise are ,the characteristics, skills, and
knowledge that distinguish experts from
novices and less experienced people.”

10,000 hours “rule” = not true

https://www.goodlifeproject.com/podcast/
anders-ericsson/

Sebastian Baltes — Towards a Theory of Software Development Expertise

. Anders Ericsson

Merriam-

Webster

Expertise and

Expert Performance

https://www.goodlifeproject.com/podcast/anders-ericsson/

Expert Performance

In some areas (e.g., chess), there exist representative tasks
and objective criteria for identifying experts

Those are usually studied in (psychology) expertise research
Software development includes many different tasks

Much more difficult to find objective measures for
quantifying software development expert performance

-

‘ e .:’ :
e ‘“ ‘
‘ -

e
—
. %
—

_ AT "[’__ ';-[[l |

How to structure the characteristics,
skills, knowledge, and experience that
distinguish expert software developers?

Our Expertise Model

* Task-specific (e.g., writing code, debugging, testing)
* Focuses on individual developers
 Process view (repetition of tasks)

* Notion of transferable knowledge and
experience from related fields or tasks

« Continuum instead of discrete expertise steps

expert
expert

O

novice novice

[

The product
itself

[Work as challenge

Seeing
usage

Quality

[Personal priorities

Reward

Final Conceptual Theory

Designing
architecture

Debugging

Writing code

[

Helping
others

[Openness]\
[Agreeableness]\
[Conscientiousness]//
[Age—related decline]/

§| Personality (FFM)

|_{ Mental abilities

%{ Skills

Problem-solving

Continuous
learning

Assessing

[Communication
‘ trade-offs

Individual differences
Motivation |<-—
|
|
|

Structure

Peer-review

)

Maintainability

Static analysis

)

Algorithms and data ’ (Design and (Programming
structures architectural patterns paradigms
Requirements | | Project ’
engineering | management
feedback
generates transfer generates
N\ . :
Task \l Task-specific knowledge* repetition O
makes more/less gffects Code Quality
. ; affects
likely to acquire °
affect | ; 2
| Behavior &
(2]
makes more/less affects o
Task context likely to acquire

\{ Productivity

| Task-specific experience *
transfer
self-reflection feedback | General experience *l
- Team Information Experi-
Training Freedom .
structure exchange mentation

Time tracking

Issue tracking

monitoring

Tool
support

Performance

Commit
frequency

LOC
added/deleted
#lssues
resolved
Expected vs.
actual time

Project management]

Development diaries]

[

The product

itself

[Work as challenge

Seeing
usage

Quality

[Personal priorities

Reward

Final Conceptual Theory

Designing
architecture

Debugging

[Algorithms and data ’ (Design and

structures

architectural patternsJ (

Programming
paradigms

Testing ‘

Requirements |
engineering

| Project

| management

feedback
General knowledge

[

Helping
others

[Openness

[Agreeableness

[Conscientiousness

[Age-related decline

§| Personality (FFM)

|_{ Mental abilities

Individual differences
Motivation |<-—
|
|
|

%{ Skills

Problem-solving

Communication

learning

Assessing

‘ Continuous
L trade-offs

repetition ()

monitoring

generates transfer generates
\ -
Task \l Task-specific knowledge *
makes more/less gffects
. ; affects
likely to acquire °
affect | ;)
| Behavior &
(2]
makes more/less affects o
Task context likely to acquire
| Task-specific experience *
transfer
self-reflection feedback | General experience *l
- Team Information Experi-
Training Freedom .
structure exchange mentation

Time tracking

Issue tracking

Sebastian Baltes — Towards a Theory of Software Development Expertise

Structure

Peer-review]

Maintainability

Static analysis]

Code Quality

Performance

Commit
frequency

LOC
added/deleted
#lssues
resolved
Expected vs.
actual time

Productivity

Tool Project management]

support

Development diaries]

11

Final Conceptual Theory

| feedback
Mentoring*

Education General knowledge

repetition O
affects

Individual differences

Motivation akes more/less‘

Iely to acquire affects

A 4

Personality (FFM) affect

Behavior

Mental abilities akes more/less |

Skills Task context lixely to acquire |
Task-specific experience™

transfer
General experience *

Sebastian Baltes — Towards a Theory of Software Development Expertise

affects

affects

P
«

self-reflection feedback monitoring

v

Knowledge

 Knowledge is a “‘permanent structure of information stored in
memory” (Robillard, 1995)

* Developer’'s knowledge base considered most important
factor influencing performance (curtis, 1984)

» Studies suggest that this knowledge base is “highly language
dependent’, but experts also have “abstract, transferable

knowledge and skills” (sonnentag et al., 2006)

* “Semantic” vs. “syntactical” knowledge (shneiderman and Mayer, 1978)

Knowledge

Knowledge is a “permanent structure of information stored in
memory” (Robillard, 1995)

Developer’'s knowledge base considered (most) important

factor influencing performance (curtis, 1984)

e

Studies suggest {
dependent’, but
knowledge and 3

‘Semantic” vs. “sy|

FIFTEEN YEARS OF PSYCHOLOGY IN SOFTWARE ENGINEERING:
INDIVIDUAL DIFFERENCES AND COGNITIVE SCIENCE

BILL CURTIS ICSE 1984

Microelectronics and Computer Technology Corporation (MCC)
Austin, Texas

DAl -T- 1 Tl £ C ~L1 N 1 r

Knowledge

Knowledge about “paradigms [...], data
structures, algorithms, computational ﬁ

complexity, and design patterns” s %
=
Education General knowledge Mentoring ‘ ‘
transfert enerales
Task-specific knowledge * | An “intimate knowledge of
likely to acquire affeCtSE % the deSign and philosophy Of
Behavior %% aeCty pertormance the language”
SH
®

makes more/less “a ffocts
likely to acquire | affects
Q
cl,

Task-specific experience ™

r 3

transfer | |
General experience

*

Experience

* Many participants mentioned not only the quantity, but also
the quality of experience

Having shipped ,a significant
amount of code to production
or to a customer”

Having built ,everything from small
projects to enterprise projects”

Q

-
7

'

-

N |

||

Final Conceptual Theory

Individual differences

Motivation

Personality (FFM)

Mental abilities

Skills

| feedback
Education |\ > General knowledge « /I Mentoring™
generates transfer? generates
Task-specific knowledge * repetition ()
1 1 affects
< makes more/less
: . affects_ | q.
likely to acquire ol e
f g N
affect — » Behavior %-g L5t Performance
A a' B
makes more/less i =y
: : affects
Task context | kely to acquire | affects
Task-specific experience™
transfer |)
self-reflection feedback General experience * monitoring

Tasks

Asked participants to name the three most important tasks
that a software development expert should be good at

Most frequently mentioned: “Architecting the
 Designing a software architecture software in a way that

* Writing source code allows flexibility in
« Analyzing and understanding project requirements
requirements and future applications

of the components”

Other mentioned tasks: testing,
communicating, debugging

K

-
[2

'

-

Sebastian Baltes — Towards a Theory of Software Development Expertise 18

Which factors influence expertise

development over time?

3 ¥ ¥

\
(

Final Conceptual Theory

Individual differences

Motivation

Personality (FFM)

Mental abilities

Skills

self-reflection

| feedback
Education |\ »/ Generalknowledge |« Mentoring™
generates transfer? generates
— \ 4 agw n
task Task-specific knowledge * repetition ()
1 1 affects
makes more/less affects
likely to acquire ol &
f V.V 2 —
affect - » Behavior %-g aiiects Performance
A a' E
makes more/less i =y
: : affects
Task context | kely to acquire | affects
Task-specific experience™
transfer |)
feedback General experience * monitoring

Individual Differences: Motivation

Related work describes how individual differences affect
expertise development

Mental abilities and personality are relatively stable
Motivation can change over time

Many participants intrinsically motivated:
* Problem solving

* Seeing a high-quality solution
* Creating something new
 Helping others

“The Initial design is fun,
but what really is more
rewarding is refactoring.”

™ .

|

Final Conceptual Theory

Individual differences

A

Motivation

Personality (FFM)

Mental abilities

Skills

self-reflection

| feedback
Education |\ > General knowledge « Mentoring™
generates transfert generates
task Task-specific knowledge * repetition ()
1 1 affects
makes more/less
: . affects_ | q.
likely to acquire ol e
f g N
affect » Behavior %-g Sieets Performance
A a' B
makes more/less i =y
el : affects
Task context || /kely to acquire | affects
Task-specific experience™
transfer |)
feedback General experience * monitoring

Task Context

_ [wHeRE |
Work environment | whHy ‘\4 J [WHEN
(office, coworkers, customers etc.) N
Project constraints “ N iew)

(external dependencies, time, etc.)

Can either foster or hinder expertise dev.
We asked: What can employers do?

1. Encourage learning

(training courses, library, monetary incentives)
2. Encourage experimentation

(side projects, being open to new ideas/technologies)
3. Improve information exchange

(facilitate meetings, rotating between teams/projects)
4. Grant freedom

(less time pressure)

Bud-$1xa3u02/60/4T0Z/SPeoldn/3usiuos-dm/60)g/Wod ajIgouuesy//:diy

Final Conceptual Theory

Individual differences

A

Motivation

Personality (FFM)

Mental abilities

Skills

self-reflection

| feedback
Education |\ > General knowledge « Mentoring™
generates transfert generates
task Task-specific knowledge * repetition ()
1 affects
makes more/less affec
likely to acquire
affect — » Behavior e peets Performance
makes more/less
: : affecty
Task context | /lkely to acquire | affects
Task-specific experience™
transfer |)
feedback General experience * monitoring

Deliberate Practice S

Having more experience does not automatically

lead to better performance (ericsson et al., 1993)
-

Performance may even decrease over time (Feltovich, 2006)

Length of experience only weak correlate of job performance
(Ericsson, 2006)

Deliberate practice: ,Prolonged efforts to improve
performance while negotiating motivational and external
constraints” (Ericsson et al., 1993)

Deliberate Practice: Self-Reflection

(Self-)reflection and feedback important to monitor
progress towards goal achievement (Locke and Latham, 1990)

“[T]he more channels of accurate and helpful feedback

we have access to, the better we are likely to perform.”
(Tourish and Hargie, 2003)

Mentors, teachers, and peers are an important sources for
feedback

Final Conceptual Theory

Individual differences

Motivation

Personality (FFM)

Mental abilities

A

Skills

self-reflection feedback

Education I\ > General knowledge < Mentoring
generates transfer? generates
Task Task-specific knowledge * repetition ()
1 1 affects
makes more/less affects
likely to acquire ol &
t g N
affec — » Behavior %-8' Allgets Performance
A a' B
makes more/less i =y
likely to acquire affects
Task context ey quire } affects
Task-specific experience™
transfer |)

General experience

*

Sebastian Baltes — Towards a Theory of Software Development Expertise

monitoring

27

Final Conceptual Theory

Individual differences

A

Motivation

Personality (FFM)

Mental abilities

Skills

self-reflection

| feedback
Education |\ > General knowledge « Mentoring™
generates transfert generates
task Task-specific knowledge * repetition ()
1 1 affects
makes more/less affects
likely to acquire ol &
affect _ y S| = affecth
" » Behavior g—-g | Performance
A (o) Q)
makes more/less i =y
likely to acquire lieEts
Task context ey quire | affects
Task-specific experience™
transfer |)

feedback

v

General experience

*

monitoring

Performance

o
Y
< <
S ¢
N 2
& 2
g 5

 We do not treat performance as a dependent variable that
we try to explain for individual tasks

Scope of this work:

 We consider different performance monitoring approaches
to be a means for feedback and self-reflection

Long-term goal:

* Build variance theory for explaining and predicting the
development of expertise

Performance

o* Go,
y *
& V<
S @
~ =
b |
& 2
g 5

» Participants described different properties of expert’'s source
code (well-structured, readable, maintainable, etc.)

.Everyone can write [...] code which a
machine can read and process but the key
lies in writing concise and understandable
code which [...] people who have never
used that piece of code before [can read].”

)
~ -
» ®
!

2

Performance Decline

Goal: Identify factors hindering expertise development

41.5% of participants observed a significant performance
decline over time (for themselves or others)

Reasons: “| perceived an increasing

« Demotivation procrastination in me and
e Changes in the work environment in my colleagues, by

+ Age-related decline working on the same tasks

over a relatively long time
[...] without innovation and
environment changes.”

 Changes in attitude
* Shifting towards other tasks

™ .

|

Experience vs. Expertise

e Self-assessment with semantic differential (novice to
expert) and Dreyfus expertise model

Semantic Differential Scale

* Beginning of survey:
Please rate your Java programming expertise on the following scale:
1 (Novice) 2 3 4 5 6 (Expert)

O O O O O O

* End of survey:

Please rate your own Java programming expertise according to the five stages
described below.

Discrete Expertise Model

Stage 1 (Novice):
* has little or no experience
* wants unambiguous rules to accomplish his/her tasks
* is able to handle small, isolated tasks

Stage 2 (Advanced Beginner):
* has gained some experience
* can work more independently than a novice
* knows general principles in a limited context, but does not have a holistic understanding ("big picture”)

Stage 3 (Competent):
* has a holistic understanding of the problem domain
* bases his/her work on deliberate planning and extensive past experience
* can apply general maxims (e.g. design patterns) easily to specific contexts

Stage 4 (Proficient): expert

* has a vast amount of experience that he/she can intuitively apply to new contexts
* can easily differentiate between irrelevant and important details
» constantly reflects on what he/she has done and revises own approach to perform better in the future

Stage 5 (Expert):
* he/she is a major source of knowledge and information for others
» primarily works from his/her intuition

novice

Experience vs. Expertise

» Self-assessment with semantic differential (novice to
expert) and Dreyfus expertise model

 More experienced developers adjusted their ratings
when context was provided, less experienced not

Sample 2 Sample 3

1 I E— - r

2 3 4 5
I

2 3 4 5
I

—_—l—

I I I I
Sem.Dif. Dreyfus Sem.Dif. Dreyfus

1
I
1
I

Experience vs. Expertise

Possible explanation: Dunning-Kruger effect

 Participants with a high skill-level underestimate their

ability and performance relative to their peers

» Context helped experienced developers to adjust their

ratings to be more accurate

Journal of Personality and Social Psychology
1999, Vol. 77, No. 6, 1121-1134

Unskilled and Unaware of It: How Difficulties in Recognizing One’s Own

Incompetence Lead to Inflated Self-Assessments

Justin Kruger and David Dunning
Cornell University

People tend to hold overly favorable views of their abilities in many social and intellectual domains. The
authors suggest that this overestimation occurs, in part, because people who are unskilled in these
domains suffer a dual burden: Not only do these people reach erroneous conclusions and make
unfortunate choices, but their incompetence robs them of the metacognitive ability to realize it. Across 4
studies, the authors found that participants scoring in the bottom quartile on tests of humor, grammar, and
logic grossly overestimated their test performance and ability. Although their test scores put them in the
12th percentile, they estimated themselves to be in the 62nd. Several analyses linked this miscalibration
to deficits in metacognitive skill, or the capacity to distinguish accuracy from error. Paradoxically,
improving the skills of participants, and thus increasing their metacognitive competence, helped them
recognize the limitations of their abilities.

Copyright 1999 by the American Psychological As:

Percentile

100 -
90 -
80 -
70
60 4
50 -
40-‘
30 A
20
10 A

Vo

' " —m—Perceived Ability
g Perceived Test Score
—-@-a-Actual Test Score

2nd 3rd Top
Quartile Quartiie Quartile

ews/weird-news/how-mcdonalds-takeaway-bag-ended-9664800

Summary for Developers

* See which attributes other developers assign to experts

* Learn which behaviors may lead to becoming a better software
developer:

* Deliberate practice

 Have challenging goals

* Build or maintain a supportive work environment
(also for others)

* Ask for feedback from peers

* Reflect about what one knows and what not

Sebastian Baltes — Towards a Theory of Software Development Expertise

39

Summary for Employers

* Learn what (de)motivates their employees:
* Main motivation: problem solving
* Main demotivation: non-challenging work

* |[deas on how to build supportive work environment
supporting self-improvement of staff:

* Good mix of continuity and change in software
development process

« Communicate clear visions, directions, and goals

 Reward high-quality work wherever possible

* Revisit information sharing in company

Sebastian Baltes — Towards a Theory of Software Development Expertise

D

40

Core of Conceptual Theory

Individual differences

A

Motivation

Personality (FFM)

Mental abilities

Skills

self-reflection

| feedback
Education |\ > General knowledge « /I Mentoring™
generates transfer? generates
task Task-specific knowledge * repetition ()
1 1 affects
makes more/less affects
likely to acquire ol &
ffect y N
e " » Behavior %-g alfeCly performance
A a' B
makes more/less i =y
likely to acquire lieEts
Task context ey quire } affects
Task-specific experience™
transfer |)
feedback General experience * monitoring

[

The product

itself

[Work as challenge

Seeing
usage

Quality

[Personal priorities

Reward

Complete Conceptual Theory

Designing
architecture

Debugging

[Algorithms and data ’ (

Design and (
structures

architectural patterns

Programming
paradigms

Testing ‘

Requirements |
engineering

| Project

| management

feedback
General knowledge

[

Helping
others

[Openness

[Agreeableness

[Conscientiousness

[Age-related decline

§| Personality (FFM)

|_{ Mental abilities

Individual differences
Motivation |<-—
|
|
|

%{ Skills

Problem-solving

Communication

learning

Assessing

‘ Continuous
L trade-offs

repetition ()

monitoring

generates transfer generates
\ -
Task \l Task-specific knowledge *
makes more/less gffects
. ; affects
likely to acquire °
affect | ; 2
| Behavior &
(2]
makes more/less affects o
Task context likely to acquire
| Task-specific experience *
transfer
self-reflection feedback | General experience *l
- Team Information Experi-
Training Freedom .
structure exchange mentation

Time tracking

Issue tracking

Sebastian Baltes — Towards a Theory of Software Development Expertise

Structure

Peer-review]

Maintainability

Static analysis]

Code Quality

Performance

Commit
frequency

LOC
added/deleted
#lssues
resolved
Expected vs.
actual time

Productivity

Tool Project management]

support

Development diaries]

42

Designing
architecture

Debugging
Writing code

Algorithms and data Design and Programming
structures architectural patterns paradigms

Requirements] J Project
engineering | management

[The product

[Work as challenge

itself feedback
[Personal priorities General knowledge

— Reward gengrates transferf generates Structure Peer-review]

Quality = : 1
- — - Task — * repetition O Maintainability Static analysis]

Helping Individual differences Task-specific knowledge
[others [Openness affects Code Quality

Performance
[Agreeableness }\ likely to acquire | |2t _
g y q T

ffect
are I Behavior :i

Commit
frequency

LOC
added/deleted
#lssues
resolved
Expected vs.
actual time

[Conscientiousness }/’§| Personality (FFM)
|| Mental abilities

[Age-related decline }/%{ SKills

09,

makes more/less

Task context likely to acquire affects

| Task-specific experience *

Motivation |-— makes more/less
|
|
|

Productivity

Problem-solving transfer

self-reflection feedback General experience

Communication * .
monitoring

learning

Assessing
trade-offs

{

[-

[Continuous
[

Time tracking

Issue tracking

Project management]

Trainin Team Information Freed Experi-
g structure exchange reedom mentation suppor Development diaries

Sebastian Baltes expertise.sbaltes.com

@s_baltes Data and scripts available on Zenodo

Sebastian Baltes — Towards a Theory of Software Development Expertise 43

