
Visually Analyzing Company-wide Software
Service Dependencies: An Industrial Case Study

Sebastian Baltes, Brian Pfitzmann, Thomas Kowark
SAP SE, Germany

{sebastian.baltes,brian.pfitzmann,thomas.kowark}@sap.com

Christoph Treude
Uni Melbourne, Australia

christoph.treude@unimelb.edu.au

Fabian Beck
Uni Bamberg, Germany

fabian.beck@uni-bamberg.de

Abstract—Managing dependencies between software services
is a crucial task for any company operating cloud applications.
Visualizations can help to understand and maintain these com-
plex dependencies. In this paper, we present a force-directed
service dependency visualization and filtering tool that has been
developed and used within SAP. The tool’s use cases include
guiding service retirement as well as understanding service
deployment landscapes and their relationship to the company’s
organizational structure. We report how we built and adapted the
tool under strict time constraints to address the requirements of
our users. We further share insights on how we enabled internal
adoption. For us, starting with a minimal viable visualization
and then quickly responding to user feedback was essential for
convincing users of the tool’s value. The final version of the
tool enabled users to visually understand company-wide service
consumption, supporting data-driven decision making.

I. INTRODUCTION

Services enable access to capabilities through clearly de-
fined interfaces [1]. The notion of software applications as
services gained popularity in the late 1990s with Amazon’s
service-based model [2] and later as part of the service-
oriented architecture paradigm [1]. Since then, different tech-
niques for defining interfaces and consuming services have
emerged (e.g., SOAP or REST). Moreover, the appropriate
size of services, ranging from small microservices to large
monoliths [3], has been controversially discussed.

In modern cloud environments, there is often a multitude of
services that interact via interfaces, forming complex software
systems offered to customers as Software-as-a-Service (SaaS)
solutions. Especially in the context of business software,
such solutions are business-critical for customers, requiring
a high degree of stability and reliability. Therefore, managing
dependencies between hundreds of services constituting the
backbone of SaaS solutions becomes business-critical, too. For
instance, before retiring a previously deprecated service, one
must ensure that all dependencies on it have been migrated.
Reliable service metadata is imperative for handling such
deprecation scenarios. A visualization of service dependencies
and related metadata can support monitoring a company’s
service landscape, enabling informed decisions on required
maintenance activities.

In this paper, we present insights from an industrial case
study at SAP. We developed a tailored node link visualization
that enables the exploration of dependencies and metadata
of SAP-managed services across different scenarios. Our per-
spective is that of a team working on strategic projects, i.e.,

Fig. 1. SAP-managed service dependencies of a large organizational unit.
Node color encodes native cloud environment of a service. Two large clusters
correspond to the older (yellow) and newer (green, blue) environments.

executive projects with high priority. The first three authors
were part of this team. We report on an initial version of the
visualization that we built for analyzing SAP’s cloud service
consumption, and a revised version built for investigating
service release stages and organizational aspects. We also
discuss factors that supported internal adoption and provide
information on how a large software company maintains and
analyzes its service metadata and dependencies. In summary,
we report a case study on the productive use of software
visualization in industry, which is, according to van Deursen,
its “ultimate measure of success” [4].

II. RELATED WORK

Research on software dependencies is prevalent, with stud-
ies reporting findings such as an exponential increase in inter-
project dependencies in contrast to linear project growth [5],
risks within software ecosystems due to transitive package
dependencies [6], and developers’ hesitancy to update package
dependencies [7]. However, such package dependencies are
inherently different from service dependencies. While static
dependencies can be derived from package configuration files
(e.g., Maven’s pom.xml), service dependencies might man-
ifest as a simple HTTP GET request in the source code,
accessing a remote service URL. Therefore, monitoring and



controlling complex service dependencies usually involves
combining data from multiple sources [8].

Graph-based visualization of package dependencies is a
well-researched topic in software visualization [9] with two
main approaches: (i) node-link diagrams, where dependencies
are drawn as links connecting the software artifacts, and
(ii) matrices, which visually indicate adjacency information
in the cells of a quadratic matrix [10]. As matrix-based
approaches can be less accessible and more difficult to ap-
ply, node-link approaches—like the one we use—appear to
dominate both the research and tool landscape. They can
flexibly encode additional metrics [11], and clearly reveal
dense clusters when using a force-directed layout, i.e., a simu-
lated physical system of forces between nodes [12]. Although
most approaches do not directly address service dependencies,
the qualities of force-directed node-link visualizations can be
transferred.

Regarding service dependencies, researchers have proposed
approaches based on trace analysis to understand the underly-
ing architecture, detect antipatterns, and debug microservice-
based systems [13], [14]. Researchers have also empha-
sized the need for anomaly detection in service dependency
graphs [15] and proposed graph-based approaches to detect
cyclic dependencies [16]. Specific approaches for visualizing
service dependencies have recently been discussed in a sur-
vey [17], where graph-based visualization methods provide
the majority of examples. Although industrial tools exist, most
papers are not based on industrial data and focus on individual,
often microservice-based, applications. Our paper contributes
a company-wide perspective, which includes understanding
and improving dependencies across a diverse set of company-
managed services, ranging from small microservices to larger
applications and spanning multiple cloud environments.

III. BACKGROUND

This section provides background information on the service
metadata that SAP maintains and introduces the use cases that
our tool was required to support.

A. Service Metadata at SAP

SAP is one of the largest providers of enterprise software
both on-premises and in the cloud. In addition to standalone
Software as a Service (SaaS) solutions, SAP provides various
other types of services on its cloud platform, the SAP Business
Technology Platform (BTP). Service types include infrastruc-
ture services (e.g., observability services), technical services
(e.g., database services), and application services (e.g., SAP’s
SaaS offerings). Metadata for all customer-facing and all
internal services is collected from different source systems
and compiled into a central database that is accessible via an
(internal) API and a web tool. The collected metadata includes
a service ID, name, description, the responsible organizational
unit, and the service’s release stage. Dependencies on other
services and the service’s native cloud environment, i.e., the
environment the service is deployed to, are also maintained.
Service cross-consumption between cloud environments is

TABLE I
MAIN USE CASES OF OUR VISUALIZATION TOOL.

Use Case Description
CONSUMPTION Enabling a holistic analysis of service deployment and

consumption.
QUALITY Revealing data quality issues.
DEPRECATION Retiring deprecated services.
ORGANIZATION Assessing the relationship of service dependencies

and the company’s organizational structure.
REPORTING Preselecting data for reports (filtering using visualiza-

tion, then additional analyses/reporting in other tools).

possible, but each service has exactly one native cloud environ-
ment (e.g., the SAP BTP Cloud Foundry environment). Service
dependencies are modeled as a requires relationship, i.e., a
service declares its dependencies on other services. The service
release stages model a life cycle from planning over internal
and beta usage to general availability (GA). After a service
is released, it can be marked as deprecated and later retired.
For our visualization, we (continuously) retrieved metadata for
hundreds of services across all cloud environments and release
stages via the above-mentioned service metadata API.

B. Use Cases

Table I lists the main use cases that guided the develop-
ment of our visualization tool. The CONSUMPTION use case
captures the goal of understanding service deployment and
consumption. A cross-cutting concern we were interested in
throughout the project was better understanding the QUALITY
of the available service metadata. Since the service metadata
in the above-mentioned database originates from multiple
source systems, data quality issues can arise due to different
metadata standards, missing information in the source systems,
or problems during data processing and aggregation.

After the initial version of our visualization tool was
available, colleagues approached us with additional use cases.
While the CONSUMPTION and data QUALITY aspects were
important to them as well, they were particularly interested in
better understanding service DEPRECATION and understanding
which ORGANIZATIONS provide and consume deprecated (but
not yet retired) services. SAP’s organization is structured along
organizational levels, starting with the top-level board areas
down to individual teams.

An important first step towards retirement is marking a
service as deprecated, giving dependent services enough time
for migration. If an already deprecated (internal) service is
rarely used, it makes sense to retire it soon, enabling the re-
prioritization of development and operation resources. Migra-
tion and retirement are easier to orchestrate if services are
organizationally close to each other, connecting DEPRECATION
and ORGANIZATION. One of our colleagues’ goals was to
quickly get a company-wide overview of which services
depend on deprecated services, summarizing their findings in a
detailed report. The related REPORTING use case motivated us
to provide interfaces for exporting filtered data from the visu-
alization, enabling users to import that data into analytics tools
for additional analysis/visualization (e.g., tables, diagrams).



IV. VISUALIZING SERVICE METADATA

The existing SAP-internal service metadata tool allowed
users to filter services and provided a service dependency
visualization. However, the tool was developed for maintaining
and exploring the metadata and dependencies of individual
services rather than performing holistic analyses across the
entire company. Teams independently manage their services’
dependencies using this central tool, which lends itself to the
distributed nature of a service-oriented architecture. However,
there is still a need for global monitoring. This is where
software visualization comes into play.

Although global analyses were possible with existing data
and tools, it was more cumbersome than the visual approach
we implemented. For example, our tool made it easier for
users to detect service consumption patterns. To efficiently
address the CONSUMPTION use case, we quickly developed a
first dependency visualization that also allowed assessing data
QUALITY. To facilitate distribution within the company, the
visualization needed to be accessible through a web browser,
usable by business users, and support interactive exploration
of the data. Unfortunately, existing graph visualization tools
such as Gephi and yEd did not meet these criteria. Therefore,
we decided to implement a custom visualization tool using
D3.js. We developed a first version based on the require-
ments outlined above in a short period of time, and then later
extended the visualization tool to cover more use cases.

V. INITIAL VISUALIZATION TOOL

In the following, we outline central design decisions for
addressing the CONSUMPTION and QUALITY use cases.

A. Design Decisions

Our first fundamental decision was to use a force-directed
graph layout so that clusters of connected services as well
as completely unconnected services would immediately be
visible. To this end, we utilized d3-force for implementing
a global many-body force simulation with a negative node
strength leading to a node repulsion analog to electrostatic
charge. For a space-efficient representation of services, we
further decided to use a circular node shape with the node color
encoding one information at a time, opposed to multiple text
fields within rectangular nodes in the existing visualization.
Moreover, we needed to draw the directed edges between the
nodes in a way that does not clutter the high-level service
dependency view too much. After exploring different arrow
forms, we ended up using a small circle to indicate the
direction of an edge, which introduced significantly less clutter
than arrow heads in dense parts of the graph while still
indicating the direction upon close inspection (see Figure 1).

By default, our visualization only showed the dependencies
(as edges) and native cloud environments (encoded in node
color). Additional information was available in a tooltip that
appeared while hovering over a service node (see Figure 2-1),
showing a brief summary of the service’s metadata (service
ID, name, native cloud environment, and the board area
responsible for the service). We further implemented the

option to dynamically change the color coding of the nodes
to, e.g., project the organizational unit instead of the cloud
environment onto the nodes (see Figure 2-4). To enable flexible
exploration of the data, we added filters that allowed users to
focus on the dependencies of a particular service or on all
services of a particular organizational unit. Color coding and
filters were stored as URL parameters.

B. Observations

Using our visualization tool, we explored the service land-
scape and wrote a brief report with our findings on CON-
SUMPTION and data QUALITY. One finding was that the two
clusters appearing in larger graphs (see, e.g., Figures 1) were
caused by high coupling between services within the two main
native cloud environments. The links between those clusters
correspond to service cross-consumption between the cloud
environments. In the following, we refer to cloud environments
by their node color. The yellow cloud environment represents
the oldest environment, for which SAP already provides
guidance for migrating services to newer environments. The
green cloud environment is more recent, and most services are
deployed into it. The blue environment is the most recent one.

In Figure 1, which is typical for many organizational units
we analyzed, one notices that cross-consumption between
services in the recent environments (green and blue) is com-
mon and that services in the legacy environment (yellow)
form a separate cluster. Cross-consumption between newer and
older services exists (usually green services consuming yellow
services) and is caused by yellow services that have not been
migrated yet (the environment is still supported and maintained
by SAP). Considering the co-existence of green and yellow, it
is understandable that services in the more recent environment
(green) consume services in the older one (yellow).

It is worth noting that there were some individual green
services that were more closely tied to yellow (legacy) services
than to other green services. We investigated those green ser-
vices and noticed that, while not belonging to the legacy envi-
ronment, those services had already been marked as deprecated
and will hence be migrated soon. We further noticed a strong
relationship between service dependencies and organizational
structure, a phenomenon we investigate more closely in the
following section (use case ORGANIZATION). A feature that
proved helpful in exploring individual services and their role in
the overall service landscape was the edge highlighting feature
that we implemented (see Figure 3-1): while a left-click on a
service opens the metadata panel, a right-click highlights all
incoming service dependencies, i.e., all services depending on
the selected service.

CONSUMPTION: The force-directed layout proved useful
in revealing a strong coupling between sets of services.

Managing internal service metadata in a large international
software company is a complex task. As mentioned above,
such metadata usually originates from different source sys-
tems. This, together with the constant evolution of the services,



Fig. 2. Our visualization tool with different filter and display settings for a
selected service: (1) direct dependencies, (2) all dependencies up to a depth
of two, (3) inverted dependency relationship, (4) color configured to encode
organizational unit instead of native cloud environment.

leads to potential data QUALITY issues. Our visualization
proved useful in detecting different kinds of such issues.
Services without dependencies were immediately visible be-
cause the force-directed layout arranged them in an outer ring
around the connected services in the center. Furthermore, users
were able to detect missing data using the gray color that
we assigned to nodes with missing values. In the cases we
analyzed, missing data could usually be attributed to the fact
that services were already deprecated, retired, or peripheral to
the cloud platform.

QUALITY: The force-directed layout and the node color
coding proved useful for detecting data quality issues.

VI. EXTENDED VISUALIZATION TOOL

After our initial visualization tool was available, colleagues
from a different team approached us with a number of ques-
tions about SAP’s cloud services. While we cannot share
the detailed questions, we will outline aspects of the service
metadata they were interested in and how we adapted our tool
to support the additional use cases.

A. Design Decisions

Our colleagues had much more detailed questions about
service CONSUMPTION within subsets of services, filtered
by cloud environment, organizational unit, or release stage.
They were particularly interested in service DEPRECATION,
because deprecated services with few or no dependencies are
candidates for service retirement. Another important aspect
was the ORGANIZATIONS responsible for the services and
downstream REPORTING tasks. To support these new use
cases, we extended our tool. Previously, it was possible to filter
services, e.g., by their cloud environment or organizational
unit. However, it was not possible to independently filter both
sides of the dependency relationship. For example, it was not
possible to select all services from a particular organizational
unit that depended on a deprecated service. Therefore, we

significantly extended the filter options and added a graphical
user interface in addition to the URL parameters. We continued
to encode the filter options in the URL to enable sharing of
filtered views. For convenience, we added an autocompletion
feature to the service ID and service name filters.

To make it clear which services were matched by the service
filter and which were dependencies of those filtered services,
we optionally highlighted the matched services using a thick
black circle (see, e.g., Figure 2-2). The non-marked services
are the direct and transitive dependencies of the marked filtered
services. We further added an option to hide services without
any service dependencies to reduce clutter. The possibility
to show dependencies only up to a certain depth existed
before and proved useful, because some of our colleagues’
questions required focusing, e.g., on direct dependencies only
(corresponding to a max depth of 1, see Figure 2-1). Moreover,
we added an option to encode the service release stage in
the node color (see Figure 3-2) and added the possibility to
invert the dependency direction, i.e., moving from the default
requires relation to a required by relation (see Figures 2-3).
To support the REPORTING use case, we added an export
feature that created two CSV files: one with the metadata of
the currently filtered services and one with their dependencies.

To help users understand the evolution of a service as part
of the DEPRECATION use case, we needed to retrieve the time
stamps of release stage changes from a different system and
integrate this information with the existing service metadata.
We integrated the resulting release stage change log in the
service metadata panel (see panel in Figure 2).

B. Observations

Figure 3-2 shows GA services (red nodes) directly depend-
ing on services in release stage Deprecated (orange nodes).
This reveals that there are indeed GA services directly depend-
ing on recently deprecated—but not yet retired—services. As
mentioned before, service deprecation is a logical first step
that triggers service migration before the deprecated service
can be retired. The release stage change log enabled our users
to explore this temporal relationship.

DEPRECATION: Selecting only direct dependencies and
adding temporal information enabled users to identify
deprecated services that are candidates for retirement.

Our colleagues were particularly interested in the organiza-
tional perspective on service dependencies. While we cannot
go into the details of which organizations they were focusing
on, we can report some general observations. Figures 3-3 and
3-4, for instance, show the dependencies of two organizational
units side by side. The node color encodes the high-level
organization they are part of. The first unit (Figure 3-3) has
mainly organization-internal dependencies. Services provided
by the second organization (Figure 3-4), on the other hand,
were intertwined with services provided by another high-level
organization (purple). Often, such patterns corresponded to
units providing foundational services versus units maintaining



Fig. 3. Different aspects that our tool can visualize: (1) highlighting a central logging service in the organization from Figure 1, (2) GA services directly
depending on recently deprecated (but not yet retired) services, (3) dependencies of services in one unit solely having organization-internal dependencies, (4)
dependencies of a unit relying also on services provided by other organizations.

business services on top. We see this as an indication of Con-
way’s law, which states that “any organization that designs a
system (defined broadly) will produce a design whose structure
is a copy of the organization’s communication structure” [18].
Such patterns are not problematic as long as they are—as in
the above examples—a function of the organization’s purpose
and not a mere artifact of the hierarchical structure.

ORGANIZATION: Certain service dependency patterns
were explainable by the organizational structure.

Regarding the REPORTING use case, it was important
to understand the work mode of our users and what their
deliverables were. Our goal was to provide value beyond
the capabilities of the existing tooling without replicating
existing functionality. Hence, we decided to implement only
very basic reporting features (e.g., number of matched ser-
vices/dependencies), leaving downstream analysis tasks to the
tools our users were accustomed to. The CSV export that we
added provided a clean interface between our tool, which was
used to explore, filter, and visualize the data, and the analytics
software used for further analysis and reporting.

VII. DISCUSSION AND CONCLUSION

In this paper, we reported findings from an industrial case
study on managing service dependencies using a visualization
tool. The highlighted use cases demonstrate that a tailored yet
relatively simple graph visualization approach can have sub-
stantial impact on understanding and maintaining a company’s
software service landscape. Our visualization provides an
overview of hundreds of services by default, but interactivity
and adaptability were key for gaining deeper insights. In a
corporate setting, it is important to recognize that a novel
(visualization) tool is usually part of a larger analysis and
reporting process. In our case, this meant consuming and
preprocessing data from existing systems and providing an
interface for users to export data for further analysis. We
incrementally increased the value of our visualization tool,
starting with a quickly built prototype that already provided
useful results, serving as a minimum viable solution. This
enabled us to collect user feedback early on, resulting in

additional and more specific feature requests. Although this
process led to a tool tailored to the service metadata that SAP
collects and the use cases of SAP-internal stakeholders, the
process itself and our general visualization approach do likely
generalize to other companies. In addition, our use cases can
act as candidate scenarios for similar applications.

REFERENCES

[1] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz,
“OASIS Reference Model for Service Oriented Architecture 1.0,”
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html, July 2006.

[2] W. Vogels, “The Distributed Computing Manifesto,”
https://www.allthingsdistributed.com/2022/11/amazon-1998-distributed-
computing-manifesto.html, November 2022.

[3] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, “Microservices
migration in industry: Intentions, strategies, and challenges,” in ICSME
2019. IEEE, pp. 481–490.

[4] A. van Deursen, “A pragmatic perspective on software visualization,” in
SOFTVIS 2010. ACM, 2010, pp. 1–2.

[5] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella,
“The evolution of project inter-dependencies in a software ecosystem:
The case of Apache,” in ICSM 2013. IEEE, pp. 280–289.

[6] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and evolution
of package dependency networks,” in MSR 2017. IEEE, pp. 102–112.

[7] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies? An empirical study on the
impact of sec. advisories on library migration,” EMSE, vol. 23, 2018.

[8] S. Esparrachiari, T. Reilly, and A. Rentz, “Tracking and controlling
microservice dependencies,” ACM Queue, vol. 16, no. 4, p. 10, 2018.

[9] M. Shahin, P. Liang, and M. A. Babar, “A systematic review of software
architecture visualization techniques,” JSS, vol. 94, 2014.

[10] F. Beck, “Understanding multi-dimensional code couplings,” Ph.D.
dissertation, University of Trier, Germany, 2013.

[11] U. Erdemir, U. Tekin, and F. Buzluca, “E-Quality: a graph based object
oriented software quality visualization tool,” in VISSOFT 2011.

[12] J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson, and M. Duchrow,
“Cluster analysis of Java dependency graphs,” in SoftVis 2008.

[13] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE TSE 2018, vol. 47, no. 2.

[14] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, T. Xie, and L. Su,
“Graph-based trace analysis for microservice architecture understanding
and problem diagnosis,” in ESEC/FSE 2020. ACM, pp. 1387–1397.

[15] E. Gaidels and M. Kirikova, “Service dependency graph analysis in
microservice architecture,” in BIR 2020, vol. 398, pp. 128–139.

[16] H. Farsi, D. Allaki, A. En-Nouaary, and M. Dahchour, “A graph-based
solution to deal with cyclic dependencies in microservices architecture,”
in FICLOUD 2022.

[17] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi,
“Microservice architecture reconstruction and visualization techniques:
a review,” in SOSE 2022.

[18] M. E. Conway, “How do committees invent,” Datamation, April 1968.


	Introduction
	Related Work
	Background
	Service Metadata at SAP
	Use Cases

	Visualizing Service Metadata
	Initial Visualization Tool
	Design Decisions
	Observations

	Extended Visualization Tool
	Design Decisions
	Observations

	Discussion and Conclusion
	References

