
VisualCues: Visually Explaining Source Code in
Computer Science Education

Benjamin Biegel, Sebastian Baltes, Bob Prevos, and Stephan Diehl
Department of Computer Science

University of Trier, Germany
Email: {biegel,s.baltes,diehl}@uni-trier.de

Abstract—Humans are very efficient in processing and re-
membering visual information. That is why metaphors and
visual representations are important in education. Because of
their high visual expressiveness, presentation tools like Microsoft
PowerPoint are very popular for teaching in classrooms. How-
ever, representing source code with such tools is tedious and
cumbersome, while alternatives like source code editors lack
visual expression. Moreover, modifying prepared content, e.g.
while responding to questions, is not well supported. In this paper,
we introduce VisualCues, an approach with the goal of combining
the flexibility of source code editors with the visual expressiveness
of classical slide-based presentation tools. A key concept of
VisualCues is linking visual artifacts to specific elements of source
code. The main advantage is that when changing the underlying
source code, the positions of linked visual artifacts are changed
simultaneously. We implemented a first prototype and evaluated
it in two undergraduate computer science courses.

I. INTRODUCTION

The phrase “A picture is worth a thousand words.” reflects
the human ability to recall complex information more easily
if it is explained and represented visually [1, 2, 3, 4]. That
is why professional software developers [5, 6] as well as
teachers [7, 8] make use of sketches and diagrams to describe,
explore, and communicate abstract concepts in a comprehen-
sible way. Computer science education requires teachers to
show concrete source code examples for demonstrating how
introduced concepts can be applied. Classical presentation
tools like whiteboards, blackboards, or slide-based presentation
tools like Microsoft PowerPoint, are often too rigid and limited
in displaying source code and eventually restrict teachers’
visual expressiveness [9]. Especially, using slide-based pre-
sentation tools is controversial [10, 11]. Teachers are forced
to follow a linear, pre-defined presentation [12], which makes
an active interaction with the audience more complicated [13].
Moreover, such tools lack effective methods for highlighting
graphical or textual content while presenting [14]. It is not
surprising that teachers sometimes choose source code editors
or entire integrated development environments (IDEs) as alter-
native teaching tools, even though these tools are not originally
designed for presenting source code and are not suitable
for visual explanation. However, source code editors enable
a flexible and spontaneous exploration and modification of
source code, which is helpful in explaining and understanding
source code fragments [15]. The dynamic highlighting features
in editors such as emphasizing the token at the current cursor
position are also an advantage compared to PowerPoint and
whiteboards.

In summary, with classical tools, computer science teachers
are not able to switch seamlessly between teaching abstract
software engineering concepts and concrete source code exam-
ples. Using both PowerPoint and a source code editor within
a single lesson increases the complexity of the presentation
for both teachers and students. In particular, teachers are
highly limited in contrasting several aspects across different
abstraction levels. Eventually, either they have to constantly
switch between PowerPoint and the source code editor or they
have to choose between a visually expressive, but static, and
a flexible, but text-oriented, source code presentation. In order
to fill this gap, we introduce VisualCues, a novel approach for
displaying and annotating source code. What is special about
VisualCues is that it allows to create visual elements similar to,
for example, Microsoft PowerPoint or Adobe Illustrator. Then,
these visual elements can be connected with specific source
code elements. The inter-linking and anchoring mechanism
ensures that when changing the underlying source code, the
positions of linked visual artifacts are changed simultaneously.
Since our approach combines both visual expressiveness and a
flexible source code representation, it allows a seamless transi-
tion between teaching abstract software engineering concepts
and demonstrating concrete source code examples.

II. RELATED WORK

There exist tools that enable software developers to link
sketches to source code artifacts either based on source code
lines [16] or based on elements of the abstract syntax tree [17].
The created links are visualized in the IDE and can be used to
navigate through source code. The first tools adding annotation
support to IDEs were CodeAnnotator [18], the Rich Code
Annotation Tool [19], and vsInk [20]. A more specialized
source code presentation tool is Explorable Code Slides [15],
where code fragments are displayed in boxes and can be
freely positioned on a two-dimensional canvas. By following
source code links, the presenter is able to interactively explore
the code base. Some IDEs like IntelliJ IDEA offer a special
presentation mode in which the font size is larger than usual,
the source code editor runs in fullscreen, and additional views,
toolbars, and other components are hidden. Not specifically
designed for source code but worth to mention is the document
reader XLibris [21] that anchors sketches to single words.
Prezi [22] and MindXPres [23] use infinite zoomable canvases.
PaperPoint [24] anchors printed slides to the original digital
slides. Classroom Presenter [25] is a tool for collaborative
presentations and shareable free-form annotations.

VL/HCC 2015 Preprint, Copyright IEEE



TABLE I. REQUIREMENTS FOR VISUALCUES

Preparation: Teachers are able to entirely create the teaching material in advance
and use it in class without further preparation. Furthermore, prepared content can be
re-used multiple times.

Presentation: The tool is ideally suited for presenting the learning material within
a classroom. By providing methods for highlighting graphical as well as textual
elements, the audience can follow the presentation easily.

Follow-up: To enable an effective follow-up for the students after the lecture, the
teaching material can be made available immediately as presented.

Flexibility: Presented teaching material can be modified or extended with custom
content promptly and flexibly during the presentation.

Expressiveness: Teachers are able to create the teaching material in a creative
process, which enables them to design and arrange the learning content freely with
as little limitations as possible.

III. CONCEPT AND PROTOTYPE

Based on literature review and own observations in teach-
ing, we developed a set of requirements (see Table I), which,
in our opinion, should be considered when designing tools
for flexible and visually expressive presentations. The require-
ments Preparation, Presentation and Follow-up each represent
one phase of a usual teaching lesson. The main goal of our
approach is to support an iterative, interactive and creative pre-
sentation style. Thus, motivated by the Cognitive Dimensions
of Notations framework [26], we added the two additional
requirements Flexibility and Expressiveness.

A. State of the Art

In order to get a better impression of the state-of-the-art
tools, we use the five requirements as evaluation criteria. We
consider two teaching scenarios separately: teaching abstract
concepts and in particular the presentation of source code
examples. We compare three different tools: slide-based tools
like PowerPoint, white- and blackboards, and source code
editors (IDEs).

1) Abstract Concepts: Tools like PowerPoint are appropri-
ate for presenting abstract programming concepts and software
designs. Since teachers are forced to use a linear presentation
style and support for highlighting and adding graphical and
textual content during the lecture is weak, Presentation and
Flexibility are only covered partially by those tools. Boards
support active sketching and thus foster a spontaneous and vi-
sually expressive presentation style. Therefore, Expressiveness
and Flexibility are largely covered. Nevertheless, boards are
limited in space and thus have to be cleaned periodically, mak-
ing the discussion of previously presented content sometimes
impossible. Their main shortcoming is that every graphical and
textual content has to be created during the lecture, which is
very time-consuming and, in the sense of our requirements,
makes preparing and providing of teaching material hard. It is
obvious that a conventional IDE is not suitable for presenting
abstract concepts.

2) Source Code Examples: For demonstrating source code
examples, slide-based tools perform worse than in the previous
teaching scenario. In contrast to boards, slide-based tools put
teachers in the role of a passive narrator, who strictly follows a
predefined narrative thread. It is difficult for teachers to depart
from the prepared presentation and spontaneously address
issues raised by students, e.g., showing the source code of a

(a) Linking visuals with source code.

File Edit View

New

Load

Save

Configure

Exit
Colors

Window

Paths

(b) Linking pictures with source code.

Fig. 1. Inter-linking and anchoring mechanism of VisualCues.

method called in a prepared example, or extending and explain-
ing a prepared example. Furthermore, before and during the
lecture, it is tedious to add source code to slides or modify it.
Therefore, slide-based tools only cover Follow-up completely
and the other criteria partially. Teachers have great freedom
when using boards to create visually expressive presentations,
but boards lack support for presenting source code. On the one
hand, existing text can be easily annotated, but on the other
hand, modifying existing text is a cumbersome task. Further,
dynamic exploration of linked elements, e.g., following method
call paths, is missing and thus, fast switching between different
source code artifacts is impossible. In summary, only Expres-
siveness and Flexibility are partially covered by boards. With
IDEs, visual expressiveness, stepwise revealing of source code
fragments, and fully preparing linear presentations in advance
are not supported. Nevertheless, the ability to dynamically
explore, navigate, highlight, and modify source code during
the lecture seems to outweigh the disadvantages sometimes.

B. Concept

The concept of our approach is based on the five require-
ments mentioned above and includes solutions that try to fulfill
those requirements. To this end, we introduce our ideas for
each requirement separately.

1) Preparation, Presentation, and Follow-up: To prepare
a lecture, the teacher defines beforehand in which order the
source code should be revealed. During the lecture, teachers
can then reveal the code step by step. In the preparation
phase, the teacher can create and edit visual elements similar
to the drawing features of PowerPoint (see requirement Ex-
pressiveness below). The visual elements can then be linked
to the corresponding source code elements (see requirement
Flexibility below). All drawing features are also available
during the lecture such that the teacher can decide to create
content live, e.g. to respond to questions. Graphical as well as
textual elements can be highlighted by hovering over them;
source code can be highlighted similar to the highlighting
mechanism in IDEs. The presentation can be saved at any
time to share it with the students. After the lecture, the source
code and the linked visuals are made available. Students can
then branch the documents to get their own copy for further
annotations.

2) Flexibility: The main idea of VisualCues is inspired
by the inter-linking and anchoring mechanism of PowerPoint,
which enables, for example, visually connecting two boxes
with a line. When moving one box around, the position and



the length of the line are updated simultaneously. This ensures
that the visual connection remains. Applying this basic idea
to source code presentation leads to the concept illustrated in
Fig. 1a. The source code (lines on the left) is framed by a
yellow rectangle. Same colors indicate a connection between
elements and consequently the blue line and the blue circle are
related and have been anchored. If new lines (red) are added,
the blue circle moves down simultaneously with the blue line.
Then, in order to still frame the complete source code, the
yellow rectangle increases its height. The position of the green
rectangle remains unchanged because it is not anchored to any
element.

3) Expressiveness: An integrated source code editor allows
displaying and modifying source code as known from IDEs.
Graphical artifacts can be added and arranged freely using pre-
defined shapes, color palettes, and freehand drawings. Visual
anchor points help to easily connect several elements. Beside
manually creating and arranging visual artifacts, importing
pictures is also supported. Fig. 1b depicts how a source code
example creating a menu could be explained by using a
picture showing such a menu. Again, same colors indicate a
connection between graphical elements and source code. More
precisely, the colors indicate which source code fragments are
responsible for creating a specific menu entry. In this example,
anchoring elements is not necessary.

C. Prototype Implementation

Based on our concept, we created a first prototype imple-
menting the most important ideas. The prototype was built
using web technologies (i.e., HTML5, JavaScript, SVG, and
PHP) such that it can be executed on different devices (in-
cluding tablets).

At the bottom of the graphical user interface (see Fig. 2),
we placed a toolbar with buttons for creating predefined shapes
(left side) and a color palette, highlighting modes, and buttons
for undo and redo (right side). Currently, the prototype has
only rudimentary support for importing source code examples:
The teacher pastes his or her code examples into a converter
that generates XML-files that are automatically imported into
a database. By editing these files, one can define at what
point which part of the code is revealed. Then, one can use
a generated URL to open the examples in VisualCues for
preparing the visual content. The source code is tokenized
such that each word can be used for anchoring visual elements.
Thus, basically every programming language is supported. We
used Java and pseudo code in our evaluation (see Section IV).
Two different anchors can be created: (1) By setting only one
anchor, the position of the graphical element is bound to the
position of the anchored source code element; (2) by setting
two anchors, the size of the graphical element is bound to the
distance between both anchored source code elements. In this
case not only the position of a visual element is adjusted, but
also its size.

Textual and graphical elements can be highlighted. Select-
ing a graphical element reveals resizing handles and a context
menu. This menu includes functions for changing the z-index
of an element and for setting anchors. Furthermore, it is possi-
ble to load and save the current state of VisualCues. Additional
information can be found as supplementary material [27].

Fig. 2. Explanation of the visitor design pattern (first course).

IV. PRACTICAL EXPERIENCE

To evaluate VisualCues, we applied our prototype in two
undergraduate courses: one on software engineering, the other
on programming concepts. During the first course (20 stu-
dents), we introduced software design patterns [28] using Vi-
sualCues. After the lecture, we interviewed three students, the
current teacher (T1), and the previous year’s teacher (T2); both
are co-authors of this paper. In the second course (63 students),
T1 utilized VisualCues to explain a binary search tree imple-
mentation. In the beginning of that lecture, T2 explained two
sorting algorithms with traditional methods (PowerPoint slides
and blackboard). Thus, the students were able to compare the
traditional methods to VisualCues. After the lecture, we handed
out a questionnaire to the students and again interviewed three
of them and the two teachers. The questionnaire, the students’
answers as well as the slides created during the lectures are
available as supplementary material [27]. The feedback is of
course subjective, but nevertheless valuable for improving the
tool. Before presenting results from the evaluation, we shortly
describe the visual notation we used in the lectures.

A. Visual Notation

Inspired by Gestalt theory [29], for each course, we worked
out a specialized visual notation. In previous lectures, we
noticed that novices had problems to distinguish between
static and dynamic aspects of software. In object-oriented
programming, for example, it was difficult for some students
to see the difference between classes and objects. That is why
we consistently used rectangles for representing classes and
circles for representing objects during the first evaluation of
our tool (see Fig. 2). Same colors indicated a relation between
graphical and textual elements, which was also considered in
the second course. For the binary search tree, we performed
a manual algorithm animation: Both in the source code and a
concrete example tree, we executed the algorithm step by step
and updated the corresponding markers.

B. Questionnaire

The questionnaire was anonymous and not mandatory for
the students. After requesting demographic data, the students
were asked to rate six statements on a 5-point Likert scale
ranging from ‘I do not agree’ to ‘I agree’ (see [27]). All
students filled out the questionnaire (n=63). The average



participant was 22 years old, in the fourth semester, and male
(we only had 3 female participants). About half of the students
were enrolled in a computer science program, the others were
business informatics students.

When interpreting the answers, one has to be careful
due to the setting in which the evaluation took place (see
Section IV-E). However, for most statements, the tendency in
the responses was pretty clear: 94% of the students stated that
they were able to easily follow the subject matter presented
with VisualCues (rating 3 or 4). Furthermore, 63% thought
that it was easier to follow the VisualCues presentation than
the traditional part (rating 3 or 4), 25% were not sure (rating 2).
The last four statements aimed at finding out what method the
students would like to be used in future lectures for presenting
source code. The clear winners of this comparison were live
coding (62% rated 3 or 4) and VisualCues (56% rated 3 or 4).

C. Students’ View

The interviewed students agreed that it is important to
have a common and understandable visual language, which,
according to them, was true for the ad-hoc notation we used
in VisualCues. Furthermore, the students said that the sepa-
ration between class structure and dynamic behavior became
immediately clear to them. They appreciated that the source
code was revealed step by step. A feature that the students
particularly highlighted was the automatic relocation of the
linked drawings when new source code was added. One student
called this a “basic feature” of VisualCues. The interactivity of
our approach, enabling the teacher to include comments from
students, and generally the visual explanations, were perceived
well. One student claimed that VisualCues prevents the lecturer
from doing “PowerPoint karaoke”. Some students pointed
at lengthy passages when the teacher was drawing or had
problems using the prototype. They said that at some points,
for them it seemed like the teacher was distracted because of
usability problems with the tool. Generally, students noted that
more features known from common source code editors should
be integrated into VisualCues (e.g., syntax highlighting or the
possibility to fold source code regions). With respect to the
device setup, several students suggested that a touch screen
would enable the teacher to interact with the tool easier and
faster.

D. Teachers’ View

According to T1, roughly half of the drawings in the
first lecture were sketched out and practiced upfront, the rest
was created ad-hoc during the lecture. He noted that after
having used VisualCues several times, less preparation would
be needed. Another part of the preparation phase was planning
which source code fragments to show at what point in time.
When referring to parts of the source code, he often framed
the code with a colored rectangle and then used the same
color for the corresponding drawings. Furthermore, he took
care to use geometrical shapes consistently and to introduce
the notation step by step. The tool allowed him to respond to
questions with unplanned ad-hoc visualizations. What he did
not like was the fixation on the monitor while drawing and
some bugs in the prototype implementation. T1 proposed that
if the lecturer would use a tablet for drawing and presenting,
he or she would be more flexible and could move around

during the lecture. After the lecture, T1 made screenshots with
the final state of the drawings available to the students. He
remarked that a future version of the tool should provide a
more advanced export functionality. In the future, he would
like the tool to support structuring the lecture and providing
notes for the teacher such that he or she does not miss to
present important points (as it happened at one point during
the second lecture). We interviewed the teacher who gave the
traditional part of the lectures (T2) and asked him to compare
the new approach to the previous lectures. He said that the live
drawing worked “astoundingly good” and that there was not
much overhead introduced. He did not like the strong focus
on source code while presenting the design patterns in the
first lecture. T2 said that using our prototype, it was possible
for the audience to see to what part of the source code the
presenter is currently referring, which is sometimes hard to
see in traditional lectures.

E. Threats to Validity

The generalizability of our evaluation results is limited,
because the evaluation took place at a single university, with a
single programming language (Java), and only in undergradu-
ate courses. Furthermore, the two different teachers may have
affected the outcome. However, for presenting source code,
students clearly preferred VisualCues and live coding over
traditional methods like blackboards and PowerPoint slides.
We plan to validate these results in a larger evaluation with an
improved version of VisualCues, where the feedback from our
interviews with students and teachers is considered.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced VisualCues, a novel approach
for visually explaining source code in computer science educa-
tion. The key features are annotating source code with visual
artifacts, stepwise revealing of source code, and a spatially
stable inter-linking and anchoring mechanism. First, we de-
termined a set of five requirements, which led to a general
concept and a prototype implementation. Then, we applied the
prototype in two undergraduate software engineering courses.
During the evaluation of the VisualCues prototype, we gained
important insights for further developing our tool. We got
positive feedback and valuable hints for improvements from
the students as well as the teachers. Most of the negative points
were related to the usability of the prototype implementation,
which we want to improve in future versions. The results
from the questionnaire indicate that students would like to
see VisualCues and live coding being used for presenting
source code. Furthermore, the interviewed students said that
more features known from source code editors should be
integrated into VisualCues. We take this as a strong motivation
to integrate a full-fledged source code editor as well as the
possibility to compile and execute the written source code. We
think that this, combined with the possibility to add prepared
source code during the lecture and the visual annotation we
already support, is an approach that supports the students needs
better than the methods currently being used for presenting
source code.

ACKNOWLEDGMENT

The authors thank all students who participated in the
evaluation of VisualCues.



REFERENCES

[1] S. M. Kosslyn, “Graphics and human information pro-
cessing,” Journal of the American Statistical Association,
vol. 80, no. 391, pp. 499–512, 1985.

[2] E. R. Tufte and E. Weise Moeller, Visual explanations:
Images and quantities, evidence and narrative. Graphics
Press Cheshire, 1997, vol. 36.

[3] P. Goolkasian, “Pictures, words, and sounds: From which
format are we best able to reason?” The Journal of
General Psychology, vol. 127, no. 4, pp. 439–459, 2000.

[4] D. L. Moody, “The ”physics” of notations: Toward a sci-
entific basis for constructing visual notations in software
engineering,” IEEE Transactions Software Engineering,
vol. 35, no. 6, pp. 756–779, 2009.

[5] S. Baltes and S. Diehl, “Sketches and diagrams in prac-
tice,” in 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE’14), 2014,
pp. 530–541.

[6] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s
go to the whiteboard: how and why software developers
use drawings,” in Proceedings of the 2007 Conference on
Human Factors in Computing Systems (CHI’07), 2007,
pp. 557–566.

[7] A. F. Blackwell, “The reification of metaphor as a design
tool,” ACM Trans. Comput.-Hum. Interact., vol. 13, no. 4,
pp. 490–530, 2006.

[8] T. L. Naps, G. Rößling, V. L. Almstrum, W. Dann,
R. Fleischer, C. D. Hundhausen, A. Korhonen, L. Malmi,
M. F. McNally, S. H. Rodger, and J. Á. Velázquez-
Iturbide, “Exploring the role of visualization and engage-
ment in computer science education,” SIGCSE Bulletin,
vol. 35, no. 2, pp. 131–152, 2003.

[9] E. R. Tufte, The cognitive style of PowerPoint. Graphics
Press Cheshire, 2003, vol. 2006.

[10] R. J. Craig and J. H. Amernic, “PowerPoint presentation
technology and the dynamics of teaching,” Innovative
Higher Education, vol. 31, no. 3, pp. 147–160, 2006.

[11] S. M. Kosslyn, R. A. Kievit, A. G. Russell, and J. M.
Shephard, “PowerPoint presentation flaws and failures: A
psychological analysis,” Frontiers in psychology, vol. 3,
2012.

[12] E. Reuss, B. Signer, and M. C. Norrie, “Powerpoint
multimedia presentations in computer science education:
What do users need?” in Proceedings of the 4th Sympo-
sium of the Workgroup Human-Computer Interaction and
Usability Engineering of the Austrian Computer Society
(USAB’08), 2008, pp. 281–298.

[13] L. A. M. Abdelrahman, M. Attaran, and C. Hai-Leng,
“What does PowerPoint mean to you? a phenomenolog-
ical study,” Procedia – Social and Behavioral Sciences,
vol. 103, pp. 1319–1326, 2013.

[14] C. Ware, Visual Thinking for Design. Morgan Kaufmann
Publishers, 2008.

[15] M. Fritz, B. Biegel, and S. Diehl, “Explorable code
slides,” in 26th International Conference on Software En-
gineering Education and Training (CSEE&T’13), 2013,
pp. 199–208.

[16] L. Lichtschlag, L. Spychalski, and J. Bochers, “Codegraf-
fiti: Using hand-drawn sketches connected to code bases
in navigation tasks,” in IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC’14).
IEEE, 2014, pp. 65–68.

[17] S. Baltes, P. Schmitz, and S. Diehl, “Linking sketches
and diagrams to source code artifacts,” in 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (FSE’14), 2014, pp. 743–746.

[18] X. Chen and B. Plimmer, “CodeAnnotator: digital ink
annotation within eclipse,” in Proceedings of the 19th
Australasian conference on Computer-Human Interaction
(AUIC’07). ACM, 2007, pp. 211–214.

[19] R. Priest and B. Plimmer, “RCA: Experiences with
an IDE annotation tool,” in Proceedings of the 7th
ACM SIGCHI New Zealand Chapter’s International Con-
ference on Computer-Human Interaction (CHINZ’06).
ACM, 2006, pp. 53–60.

[20] C. J. Sutherland and B. Plimmer, “vsInk: Integrating
digital ink with program code in Visual Studio,” in
Proceedings of the 14th Australasian User Interface
Conference (AUIC’13). Australian Computer Society,
2013, pp. 13–22.

[21] G. Golovchinsky and L. Denoue, “Moving markup: repo-
sitioning freeform annotations,” in Proceedings of the
15th Annual ACM Symposium on User Interface Software
and Technology (UIST’02), 2002, pp. 21–30.

[22] L. Laufer, P. Halácsy, and A. Somlai-Fischer, “Prezi
meeting: Collaboration in a zoomable canvas based envi-
ronment,” in Proceedings of the International Conference
on Human Factors in Computing Systems (CHI’11),
2011, pp. 749–752.

[23] R. Roels and B. Signer, “MindXpres: An extensible
content-driven cross-media presentation platform,” in
Proceedings of the 15th International Conference on Web
Information Systems Engineering (WISE’14), 2014, pp.
215–230.

[24] B. Signer and M. C. Norrie, “PaperPoint: A paper-based
presentation and interactive paper prototyping tool,” in
1st International Conference on Tangible and Embedded
Interaction (TEI’07), 2007, pp. 57–64.

[25] R. J. Anderson, R. E. Anderson, B. Simon, S. A. Wolf-
man, T. VanDeGrift, and K. Yasuhara, “Experiences with
a tablet PC based lecture presentation system in computer
science courses,” in Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education
(SIGCSE’04), 2004, pp. 56–60.

[26] T. Green, “Cognitive dimensions of notations,” People
and Computers V, pp. 443–460, 1989.

[27] B. Biegel, S. Baltes, B. Prevos, and S. Diehl. VisualCues
– Supplementary material. [Online]. Available: http:
//st.uni-trier.de/visualcues

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
patterns: Elements of reusable object-oriented software.
Pearson Education, 1994.

[29] M. Wertheimer, “Laws of organization in perceptual
forms,” A source book of Gestalt psychology, 1938.

http://st.uni-trier.de/visualcues
http://st.uni-trier.de/visualcues

