
Empirical Research Plan: Effects of Sketching
on Program Comprehension

Sebastian Baltes1 and Stefan Wagner2

1 University of Trier, Germany
research@sbaltes.com

2 University of Stuttgart, Germany
ORCID ID: 0000-0002-5256-8429

stefan.wagner@informatik.uni-stuttgart.de

Abstract. Sketching is an important means of communication in soft-
ware engineering practice. Yet, there is little research investigating the
use of sketches. We want to contribute a better understanding of sketch-
ing, in particular its use during program comprehension. We propose a
controlled experiment to investigate the effectiveness and efficiency of
program comprehension with the support of sketches as well as what
sketches are used in what way.

Key words: experiment, sketching, program comprehension

1 Introduction

Software is inherently abstract and has no natural representation except source
code. Thus, especially for program comprehension, visualizations are impor-
tant [1]. Sketches are an example for informal visualizations that are often cre-
ated when understanding or explaining source code [2]. In the past, however,
these informal artefacts did not get the amount of attention by the software
engineering research community that their relevance in software development
practice could imply. With our proposed study, we want to analyse if and how
sketching improves program comprehension when explaining source code. Fur-
thermore, we want to gain a better understanding of what sketches are used in
what way to explain the source code. In the description of our experiment, we
follow the guidelines of Jedlitschka, Ciolkowski and Pfahl [3].

2 Related Work

One of the main purposes of sketching in software development is communica-
tion [2, 4]. To this end, developers often employ ad hoc notations that rarely
adhere to standards like the Unified Modeling Language (UML) [2, 5]. The am-
biguity in sketches is a source of creativity [6] and they support problem solving
and understanding [7]. In other areas like engineering, controlled experiments
have shown that the possibility to sketch has a positive effect on the quality

Sebastian
Typewriter
XP 2016 Empirical Studies Track



2 Sebastian Baltes, Stefan Wagner

of the solutions [8]. In our study, we want to analyse if sketches improve pro-
gram comprehension in a setting where one developer explains a piece of source
code to a colleague. To be able to compare the effect of sketching on program
comprehension, we measure task correctness and response time [9].

3 Experiment Planing

The overall goal of our research is to better understand the use and usefulness
of sketches in software engineering. In this experiment, we especially focus on
sketching as a means of program comprehension in the communication between
two developers. The goal of our experiment is:
Analyze sketching while explaining source code
for the purpose of evaluating its impact on program comprehension
with respect to its effectiveness and efficiency
from the viewpoint of the developer
in the context of the conference XP 2016.

From this, we derive three research questions. The first two are more de-
scriptive and exploratory to better understand which sketches developers use
and how they use them while explaining source code to another developer. The
third covers then the causal relationship of using sketches onto the effectiveness
and efficiency of comprehending the source code.
RQ 1: Which sketches do developers use to explain code?
RQ 2: How do developers explain code with and without sketches?
RQ 3: How does the effectiveness and efficiency of the understanding of the code
differ when it was explained with or without a sketch?

3.1 Experimental Units and Materials

The participants of the experiments will be pairs of developers. They will explain
source code to each other. They have to be professional software developers.

We will use four different small open-source software systems in commonly
known programming languages such as Java or C#. As the developers do not
know the source code beforehand but have to explain them, we limit the systems
to 500 LOC at most.

3.2 Tasks

The basic task for each pair of developers is to understand the source code of
a small software system and then explain certain aspects to each other. The
source code will be made available on an iPad. In case they should sketch, this
will be done on paper. The aspects to explain will be low-level and code-centric.
Afterwards, the developer the aspect was explained to, will answer questions
evaluating how well they understood the explanations.



Effects of Sketching on Program Comprehension 3

3.3 Hypotheses, Parameters and Variables

The central independent variable of the experiment is the use of sketching. The
dependent variables we are going to measure are the time needed until the ex-
plained aspect is understood and the correctness of the understanding. For the
explorative part, we also document which types of sketches (e.g. different UML
diagrams) they used and how they themselves judged the difference in explana-
tions.

The two null hypotheses we are going to investigate are:
H01: There is no difference in the effectiveness of comprehension with or without
sketches.
H02: There is no difference in the efficiency of comprehension with or without
sketches.

Furthermore, we will document further context variables such as the experi-
ence of the developers with the programming languages and whether they have
previously worked together.

3.4 Experiment Design

We will employ a blocked and balanced design. Hence, from each developer pair,
the first developer will first read and explain a software system with sketching
and then read another software system and explain it without sketching. The
second developer will do the same but first without sketching and then with
sketching.

We will openly invite the XP 2016 participants to join the experiment in
pairs. Therefore, the sample is a convenience sample.

3.5 Procedure

We need a separate location for the experiment so that the participants can
concentrate on understanding and explaining. We could hold it as one event
during the conference or continuously over the whole conference depending on
the fit to the conference schedule. We will put up lists in which the developers
can volunteer to participate.

The first step when a pair starts the experiment is that they receive an
iPad each with their two software systems to explain together with the question
concerning the aspect they later have to explain to the other developer. Then
(step 2) both get time to read the first system. In step 3, participant 1 explains
the first system to participant 2 without a sketch. The time for this is measured
on the iPad. Step 4 is a short questionnaire for participant 2 to check the cor-
rectness of their understanding. In step 5, participant 2 explains their software
system aspect to participant 1 with the help of sketches on provided paper (in-
cluding time measurement on the iPad). In step 6, participant 1 answers the
short questionnaire concerning correctness.

Next, in step 7, both participants read the next question and source code.
Then, the same procedure is repeated but participant 1 gets to use sketches while



4 Sebastian Baltes, Stefan Wagner

participant 2 does not. We will ask about the general experience and context
factors in a final questionnaire.

3.6 Analysis Procedure

We will analyse the quantitive data to test the two hypotheses using an ANOVA
analysis (RQ 3). Furthermore, we will qualitatively analyse the sketches and the
answers to the open questions in the final questionnaire (RQ 1 and 2).

4 Summary and Future Work

In summary, we want to conduct a controlled experiment to better understand
how developers use sketches in explaining source code as well as the effects on
effectiveness and efficiency of the comprehension. The results of the experiment
allow us to reduce the discrepancy between research concentrating on more for-
mally defined modelling languages and the relevance of sketching in practice.
Furthermore, we want to use the gained insights to work on sketching language
and tool support to aid practicers in sketching in an efficient and effective way.

References

1. Storey, M.D.: Theories, tools and research methods in program comprehension:
past, present and future. Software Quality Journal 14(3) (2006) 187–208

2. Baltes, S., Diehl, S.: Sketches and diagrams in practice. In: Proc. International
Symposium on Foundations of Software Engineering (FSE’14). (2014) 530–541

3. Jedlitschka, A., Pfahl, D.: Reporting guidelines for controlled experiments in soft-
ware engineering. In: Intern. Symp. on Empirical Software Engineering. (2005)

4. Cherubini, M., Venolia, G., DeLine, R., Ko, A.J.: Let’s go to the whiteboard: how
and why software developers use drawings. In: Proc. Conference on Human Factors
in Computing Systems (CHI’07). (2007) 557–566

5. Petre, M.: UML in practice. In: Proc. International Conference on Software Engi-
neering (ICSE’13). (2013) 722–731

6. Goldschmidt, G.: The backtalk of self-generated sketches. Design Issues 19(1)
(2003) 72–88

7. Suwa, M., Tversky, B.: External representations contribute to the dynamic con-
struction of ideas. In: Diagrammatic representation and inference. Springer (2002)
341–343

8. Schütze, M., Sachse, P., Römer, A.: Support value of sketching in the design process.
Research in Engineering Design 2(14) (2003) 89–97

9. Dunsmore, A., Roper, M.: A comparative evaluation of program comprehension
measures. Technical Report EFoCS 35-2000, Department of Computer Science,
University of Strathclyde (2000)




