Ethics of Care for Software Engineering

Alexander Serebrenik
a.serebrenik@tue.nl
Eindhoven University of Technology
The Netherlands

Abstract

Software engineering researchers repeatedly argue that the impact
of their research on industrial practice, while desired and intended,
is rarely achieved. We believe that a possible explanation of this
phenomenon is the opposition of “caring about” and “caring for”,
based on the ethics of care. Indeed, while software engineering is col-
laborative and hence builds on interpersonal relations, researchers
tend to care about “industrial impact” and “practitioners” in abstract
terms, but rarely care for specific individuals working in specific
contexts facing specific challenges. In this position paper, we ad-
vocate for the adoption of ethics of care in software engineering
and discuss the implications of this adoption for researchers and
conference organizers.

Keywords

software engineering, academia-industry collaboration, ethics of
care

ACM Reference Format:

Alexander Serebrenik and Sebastian Baltes. 2018. Ethics of Care for Software
Engineering. In Proceedings of FoSE (Conference acronym ’XX). ACM, New
York, NY, USA, 2 pages. https://doi.org/XXXXXXX.XXXXXXX

A recent survey of software engineering researchers conducted
by Margaret-Anne Storey and Andre van der Hoek as part of the
Future of Software Engineering track [19] surfaced multiple con-
cerns about the divergence between academic research in software
engineering and industrial practice. When asked what aspect or
aspects of the software engineering research community do not
work well and why, respondents lamented “minimal impact on in-
dustry and almost no relevance to adjacent fields like AI’, “lack of
industrial relevance”, the research community being too “far from
real issues and problems found by practitioners”, and engaging in “too
much navel gazing <...> and not enough focused on translating results
to industry and impact”. This concern is not unique to the survey
respondents. “Software engineering research has had as much impact
on programmers as astronomy has had on stars,” as Greg Wilson has
aptly put it.! However, at the same time, survey respondents regret
that, compared to other computer science researchers, software
engineering researchers are “often perceived as less relevant, less

!https://third-bit.com/talks/to-dont/#3

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference acronym XX, 978-1-4503-XXXX-X/2018/06

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-X/YYYY/MM

https://doi.org/XXXXXXX.XXXXXXX

Sebastian Baltes
sebastian.baltes@uni-heidelberg.de
Heidelberg University
Germany

impactful, and overly focused on industrial application” and remind
that as researchers “we are not competing with industry, we are doing
something different than them, and we often forget this.” The funda-
mental question is the role of the industry vs. academia relation
in software engineering. To what extent is engagement with the
industry fundamental for our discipline or is it merely the way it is
currently being organized?

A possible answer is that, in return for rewarding careers, good
salaries, and public recognition, we as academics have the duty to
generate useful knowledge for the respective state and to train a
workforce capable of applying it [14]. Given that most universities
are paid by the government, a close connection to the needs of
the state, which is paying the salaries and other expenses might,
however, threaten the validity of scientific results. In extreme cases,
this might lead to the suppression of research areas, for example,
the suppression of genetics in the Soviet Union and the creation of
pseudoscience such as Lysenkoism [8].

Another angle is that (applied) research can be judged on its
application in practice. This is particularly true in software engi-
neering, where the usefulness of knowledge becomes equated with
the impact on industrial practice. However, while science can be
“the pacemaker of technological progress” [2], it has also been argued
that the value of a scientific inquiry cannot be reduced to the set of
prospective yet uncertain technological applications (cf. discussion
of purism by Kitcher [10]).

However, Sommerville, in his classic software engineering text-
book, argues that “software engineering is intended to support pro-
fessional software development, rather than individual program-
ming” [17]. This means that software engineering as a discipline
can only exist in relation to the practice of software development.
As this practice is carried out by people, we interpret Sommerville’s
definition as a recognition that software engineering as a disci-
pline is defined through its relation with and for people. The
ethics of care considers relationships not from a legalistic point of
view but as having an intrinsic unconditional and non-negotiable
value [18]. This, together with our interpretation of software engi-
neering as a discipline, means that software engineering should
be subject to the ethics of care [7, 12].

The ethics of care is based on three ideas [15]. First, people
are fundamentally dependent on each other. Empirical software
engineering researchers inherently depend on practitioners, as re-
searchers study the process enacted by practitioners or artifacts
created by them. Second, the ethics of care calls for attention to the
most vulnerable when making decisions. There is increasing atten-
tion to making software development more diverse and inclusive [9].
Finally, the ethics of care differentiates between a more abstract
notion of “caring about” and more immediate “caring for” [12], and
argues that our moral choices should attend and respond to the
immediate conditions of our context.


https://orcid.org/0000-0002-1418-0095
https://orcid.org/0000-0002-2442-7522
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym "XX, 978-1-4503-XXXX-X/2018/06

It is particularly the last opposition between “caring about” and
“caring for” contains promise of resolving the opposition between
software engineering researchers trying to impact the industry
but reaching a limited success. Therefore, we pose the following
question:

Do software engineering researchers really “care for”
software practitioners, that is, specific individuals devel-
oping software or do they rather “care about” practical
impact on an abstract level?

This opposition calls for the replacement of generic “developers”,
“companies”, and “projects” that we care about in our research with
specific developers, companies, and projects that we care for. Trying
to impact software development practice in all its diversity might
not be feasible; however, we can and should aim to make software
development a better place for individuals.

In addition, individual researchers should continue to work with
people from vulnerable or underprivileged populations within soft-
ware engineering. Recent studies have considered the experiences
of software developers from minoritized groups such as women [3],
neurodiverse developers [6, 11], racial and ethnic minority develop-
ers [4], LGBTIQ+ developers [5], older developers [1], developers
with disabilities [16], developers from the Global South [13] and
intersections of these identities [20, 21]. This list is by no means
exhaustive and should not be limited to demographic diversity.
Perspectives of developers from small companies that do not neces-
sarily have direct connections to universities or academic research,
of scientists trained outside of computer science and developing
software to support their research, or end-users creating websites
with Generative Al should be explored and included in our view of
software engineering. The “caring for” principle requires deep and
prolonged engagement with those populations, and acknowledg-
ment of the right of these individuals to be who they are [18].

Similarly, conference organizers should prioritize topics that
affect practitioners as opposed to those that simply improve tech-
nology, and studies conducted in a specific context and having had
a positive impact in this context. We call for each and every soft-
ware engineering paper to present a story of a real person
who develops software (whether seeing themselves as a software
engineer or not), or a person who teaches or researches software de-
velopment. This presentation should include a description of their
specific context and the specific challenges they face, e.g., related
to the technology they are using, their way of working, or their
workplace environment. Such a story—anonymized or not—can
strengthen our connection to practice, answer the fundamental
question why are we doing software engineering research (because
we care), and hopefully help to achieve the impact sought after by
the survey respondents.

Acknowledgments

The authors thank Mary Shaw and Titus Winters for sharing their
thoughts on the topic on the Discord channel.

Alexander Serebrenik and Sebastian Baltes

References

[1] Sebastian Baltes, George Park, and Alexander Serebrenik. 2020. Is 40 the New 60?
How Popular Media Portrays the Employability of Older Software Developers.
IEEE Softw. 37, 6 (2020), 26-31.
Vannevar Bush. 1945. Science—The Endless Frontier: A Report to the President.
United States Government Printing Office.
Claudia Maria Cutrupi, Letizia Jaccheri, and Alexander Serebrenik. 2026. Gender
Diversity Interventions in Software Engineering: A Comprehensive Review of
Existing Practices. Comput. Sci. Rev. 59 (2026), 100812. doi:10.1016/J.COSREV.
2025.100812
Ella Dagan, Anita Sarma, Alison Chang, Sarah D’Angelo, Jill Dicker, and Emer-
son R. Murphy-Hill. 2023. Building and Sustaining Ethnically, Racially, and
Gender Diverse Software Engineering Teams: A Study at Google. In FSE, Satish
Chandra, Kelly Blincoe, and Paolo Tonella (Eds.). ACM, 631-643.
[5] Ronnie Edson de Souza Santos, Cleyton V. C. de Magalhaes, and Paul Ralph. 2023.
Benefits and Limitations of Remote Work to LGBTQIA+ Software Professionals.
In ICSE SEIS. IEEE, 48-57. doi:10.1109/ICSE-SEIS58686.2023.00011
[6] Kiev Gama, Grischa Liebel, Miguel Gouldo, Aline Lacerda, and Cristiana Lacerda.
2025. A Socio-Technical Grounded Theory on the Effect of Cognitive Dysfunc-
tions in the Performance of Software Developers with ADHD and Autism. In
ICSE. IEEE, 1-12. doi:10.1109/ICSE-SEIS66351.2025.00006
Carol Gilligan. 1993. In a Different Voice: Psychological Theory and Women’s
Development. Harvard University Press.
Sandra Harding. 1991. Whose Science? Whose Knowledge?: Thinking from Women'’s
Lives. Cornell University Press.
Sonja M. Hyrynsalmi, Sebastian Baltes, Chris Brown, Rafael Prikladnicki, Gema
Rodriguez-Pérez, Alexander Serebrenik, Jocelyn Simmonds, Bianca Trinkenreich,
Yi Wang, and Grischa Liebel. 2025. Making Software Development More Diverse
and Inclusive: Key Themes, Challenges, and Future Directions. ACM Trans. Softw.
Eng. Methodol. 34, 5 (2025), 134:1-134:23. doi:10.1145/3711904
[10] Philip Kitcher. 2001. Science, Truth, and Democracy. OUP USA.
[11] Kaia Newman, Sarah Snay, Madeline Endres, Manasvi Parikh, and Andrew Begel.
2025. "Get Me in the Groove": a Mixed Methods Study on Supporting Adhd
Professional Programmers. In ICSE. IEEE, 1217-1229. doi:10.1109/ICSE55347.
2025.00242
Nel Noddings. 2003. Caring: A Feminine Approach to Ethics and Moral Ed-
ucation. University of California Press. https://books.google.nl/books?id=
vkMKkLi6pnMYC
Chaiyong Ragkhitwetsagul, Morakot Choetkiertikul, Srisupa Palakvangsa-Na-
Ayudhya, Thanwadee Sunetnanta, and Nattanee Satchanawakul. 2025. The
Impact of COVID-19 and Remote Work on Software Development in Thailand.
In International Conference on Information Technology. 265-272. doi:10.1109/
InCIT66780.2025.11276124
Reese A. K. Richardson, Spencer S. Hong, Jennifer A. Byrne, Thomas
Stoeger, and LuAs A. Nunes Amaral. 2025. The entities enabling sci-
entific fraud at scale are large, resilient, and growing rapidly. Pro-
ceedings of the National Academy of Sciences 122, 32 (2025), €2420092122.
arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.2420092122 doi:10.1073/pnas.
2420092122
Andrew L. Russell and Lee Vinsel. 2019. Make Maintainers: Engineering Edu-
cation and an Ethics of Care. In Does America Need More Innovators?, Matthew
Wisnioski, Eric S. Hintz, and Marie Stettler Kleine (Eds.). The MIT Press, Chap-
ter 13.
Clark Saben, Jessica Zeitz, and Prashant Chandrasekar. 2024. Enabling Blind and
Low-Vision (BLV) Developers with LLM-Driven Code Debugging. J. Comput. Sci.
Coll. 40, 3 (2024), 204-215. doi:10.5555/3722479.3722531
[17] Ian Sommerville. 2011. Software Engineering. Pearson.
[18] Robert J. Starratt. 1991. Building an Ethical School: A Theory for Practice in
Educational Leadership. Educational Administration Quarterly 27, 2 (1991), 185—
202.
Margaret Storey and Andre van der Hoek. 2025. Community Survey for ICSE 2026
Future of Software Engineering: Toward a Healthy Software Engineering Community.
doi:10.5281/zenodo.18217799
Anna Szlavi, Marit Fredrikke Hansen, Sandra Helen Husnes, Tayana Uchda Conte,
and Letizia Jaccheri. 2024. Designing for Intersectional Inclusion in Computing. In
Universal Access in Human-Computer Interaction - 18th International Conference,
UAHCI 2024, Held as Part of the 26th HCI International Conference, HCII 2024,
Washington, DC, USA, June 29 - July 4, 2024, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 14696), Margherita Antona and Constantine Stephanidis
(Eds.). Springer, 122-142. doi:10.1007/978-3-031-60875-9_9
Sterre van Breukelen, Ann Barcomb, Sebastian Baltes, and Alexander Serebrenik.
2023. "STILL AROUND": Experiences and Survival Strategies of Veteran Women
Software Developers. In ICSE. IEEE, 1148-1160.

[2

B3

[4

—_
)

[8

[

[12

[13

[14

[15

[16

[19

[20

[21


https://doi.org/10.1016/J.COSREV.2025.100812
https://doi.org/10.1016/J.COSREV.2025.100812
https://doi.org/10.1109/ICSE-SEIS58686.2023.00011
https://doi.org/10.1109/ICSE-SEIS66351.2025.00006
https://doi.org/10.1145/3711904
https://doi.org/10.1109/ICSE55347.2025.00242
https://doi.org/10.1109/ICSE55347.2025.00242
https://books.google.nl/books?id=vkMkLi6pnMYC
https://books.google.nl/books?id=vkMkLi6pnMYC
https://doi.org/10.1109/InCIT66780.2025.11276124
https://doi.org/10.1109/InCIT66780.2025.11276124
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.2420092122
https://doi.org/10.1073/pnas.2420092122
https://doi.org/10.1073/pnas.2420092122
https://doi.org/10.5555/3722479.3722531
https://doi.org/10.5281/zenodo.18217799
https://doi.org/10.1007/978-3-031-60875-9_9

	Abstract
	References

