Context Engineering for Al Agents in Open-Source Software

Seyedmoein Mohsenimofidi
Heidelberg University
Germany
s.mohsenimofidi@uni-heidelberg.de

Christoph Treude

Singapore Management University
Singapore
ctreude@smu.edu.sg

Abstract

GenAl-based coding assistants have disrupted software develop-
ment. The next generation of these tools is agent-based, operating
with more autonomy and potentially without human oversight.
Like human developers, Al agents require contextual information
to develop solutions that are in line with the standards, policies,
and workflows of the software projects they operate in. Vendors of
popular agentic tools (e.g., Claude Code) recommend maintaining
version-controlled Markdown files that describe aspects such as the
project structure, code style, or building and testing. The content
of these files is then automatically added to each prompt. Recently,
AGENTS.md has emerged as a potential standard that consolidates ex-
isting tool-specific formats. However, little is known about whether
and how developers adopt this format. Therefore, in this paper, we
present the results of a preliminary study investigating the adop-
tion of Al context files in 466 open-source software projects. We
analyze the information that developers provide in AGENTS . md files,
how they present that information, and how the files evolve over
time. Our findings indicate that there is no established content
structure yet and that there is a lot of variation in terms of how
context is provided (descriptive, prescriptive, prohibitive, explana-
tory, conditional). Our commit-level analysis provides first insights
into the evolution of the provided context. Al context files provide
a unique opportunity to study real-world context engineering. In
particular, we see great potential in studying which structural or
presentational modifications can positively affect the quality of the
generated content.

Keywords

Software Engineering, Generative Al, Al Agents, Open Source

ACM Reference Format:

Seyedmoein Mohsenimofidi, Matthias Galster, Christoph Treude, and Se-
bastian Baltes. 2026. Context Engineering for Al Agents in Open-Source
Software. In 23rd International Conference on Mining Software Repositories
(MSR °26), April 13—14, 2026, Rio de Janeiro, Brazil. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3793302.3793350

This work is licensed under a Creative Commons Attribution 4.0 International License.
MSR 26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2474-9/2026/04

https://doi.org/10.1145/3793302.3793350

Matthias Galster
University of Bamberg
Germany
mgalster@ieee.org

Sebastian Baltes
Heidelberg University
Germany
sebastian.baltes@uni-heidelberg.de

1 Introduction

The launches of GitHub Copilot in 2021 and ChatGPT in 2022 have
started to transform how software is developed. Today, genera-
tive Al (GenAl) tools built around large language models (LLMs)
support software engineers throughout the software development
lifecycle (SDLC)—although most published work focuses on code
and test generation [7, 15, 17, 34, 36, 41]. The Devin AI demo pub-
lished in March 2024 fueled the first hype around agent-based
software development [18], but it took until 2025 for agent-based
software development to reach considerable adoption. In February
2025, Anthropic released Claude Code, a “command line tool for
agentic coding” [1], which represents a further step toward more au-
tonomous Al-assisted software development, enabling developers
to assign coding tasks to Al agents via a terminal interface. Human
oversight is still built-in, but can be turned off by the developer.
This brings GenAl assistants closer to the inherent meaning of an
agent that operates autonomously, adapts to change, and creates
and pursues goals (from the Latin ‘agere’, ‘to do’ in English) [27].

Context engineering is the deliberate process of designing, struc-
turing, and providing task-relevant information to LLMs [22, 29].
While prompt engineering focuses on how a task is described to
the model (e.g., instructions and output indicators) [6, 28], context
engineering focuses on what task-relevant information the model
has access to, including relevant guidelines, configuration files, doc-
umentation, and exemplary code snippets [22, 29]. An advantage
of agent-based tools compared to conversational tools is that they
allow persistent, structured, and task-specific context to be pro-
vided in a more fine-grained and targeted manner [14]. One way
to “engineer” context is to add machine-readable Al context files to
source code repositories. The Al agents then automatically add the
content of these files to their prompts. While traditional README
files are written for humans, Al context files are explicitly designed
for Al agents, providing a central machine-readable source of con-
textual information. Their content can include everything from
the required terminal commands to build and test the project over
documentation links, common workflows, coding conventions, to
instructions for creating pull requests.

AGENTS.md was introduced as an open tool-agnostic convention
for such Al context files [19], and it was recently announced as a
project in the Agentic AI Foundation. OpenAT’s Codex tool relies on
this format [26], while Claude Code by default searches for a file
named CLAUDE .md. Anthropic’s best-practice guide recommends
teams to put that file into version control so that all team members


https://orcid.org/0009-0009-1620-2735
https://orcid.org/0000-0003-3491-1833
https://orcid.org/0000-0002-6919-2149
https://orcid.org/0000-0002-2442-7522
https://doi.org/10.1145/3793302.3793350
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3793302.3793350

MSR °26, April 13-14, 2026, Rio de Janeiro, Brazil

benefit from consistent Al behavior [2]. GitHub introduced a similar
Al context file for Copilot named copilot-instructions.md [13].

Since prompts are only rarely preserved after content has been
generated [33], Al context files offer a unique opportunity to study
how developers customize Al agents to their needs, what informa-
tion they consider relevant to include, how they present it, and how
instructions and contextual descriptions evolve. To our knowledge,
we present the first holistic empirical study that analyzes context
files used to guide different Al agents in open-source software (OSS)
projects. We addressed the following research questions:

RQ1 How widely have OSS projects adopted Al context files?

RQ2 What information do open-source developers provide in Al
context files and how do they present it?

RQ3 How do AI context files evolve over time?

An initial search in October 2025 suggested that tens of thou-
sands of GitHub repositories already contained Al context files [12].
However, there was no systematic analysis focusing on “engineered”
software projects. This paper provides a first step toward filling
this gap by mining GitHub repositories to study how Al context
files are adopted, structured, and maintained, with the overarching
goal of understanding how software teams engage in context engi-
neering in practice. The results of our preliminary study are based
on data collected from 10,000 GitHub repositories (RQ1). For RQ2
and RQ3, we performed a detailed qualitative analysis of relevant
repository data, including file content, commits, and issues. As the
first study that explores the above aspects, we follow an exploratory
bottom-up approach to build an initial understanding of Al context
files as novel software artifacts. We will extend our study in the
future to answer the research questions more holistically.

2 Related Work

Agentic GenAl tools promise to introduce autonomous decision-
making and proactive problem-solving along the SDLC [16, 32].
Advances in LLMs, reinforcement learning, and multi-agent frame-
works enabled the implementation of software agents that go be-
yond simple prompt-response interactions [38]. One of the first
agent-based software development tools was Devin AI [37], which
allowed agents to search the web, edit files, and execute commands
to complete tasks iteratively and independently. In the academic
community, SWE-agent [39] allowed LLM-based agents to com-
municate with the repository environment by reading, modify-
ing, and executing bash commands [39]. Another example is Au-
toCodeRover [40], which enabled agents to access code search APIs
to help them find methods within specific classes for bug loca-
tion identification [40]. Suri et al. showcased the potential of au-
tonomous agents, particularly Auto-GPT, in software engineering
tasks and demonstrates the importance of context-specific prompts
in complex frameworks [32]. However, they also revealed that Auto-
GPT [31], despite performing well on simpler tasks, struggles with
ambiguity and complexity, underscoring the need for accurate con-
text. Although context plays a critical role in guiding autonomous
agents, prompts are typically treated as temporary artifacts and are
rarely preserved or reused [20, 21, 35]. This lack of prompt man-
agement limits reproducibility [3] and underscores the importance
of making prompt and context information explicit and manage-
able by using versioned Al context files. Recently, researchers have

Mohsenimofidi et al.

started investigating Al context files as novel software artifacts [4].
However, a holistic analysis across tools and formats has, to the
best of our knowledge, not been published yet.

3 Data Collection

To answer our research questions, we collected Al context files from
OSS projects on GitHub. Since GitHub hosts not only “engineered’
software projects, we needed to develop a strategy for selecting
repositories [24]. Many popular repositories on GitHub are not
software projects [11], which complicates sampling.

Our starting point for selecting true software projects was the
SEART GitHub search tool [5, 30]. We selected non-fork repositories
that have at least two contributors, have a license, and were created
before 1%t January 2024 with commits since 15 June 2024. We then
excluded archived, disabled, or locked repositories, resulting in a
first sample of 228,890 repositories. In the next step, we selected
repositories with an OSI-compliant open-source license [25] and
then manually filtered out licenses not intended for software and
licenses with low adoption, i.e., used in fewer than 261 repositories
(median). We focused on the ten most popular languages (Python,
TypeScript, JavaScript, Go, Java, C++, Rust, PHP, C#, and C) and
excluded repositories with fewer than 271 commits (median) or
fewer than 7 watchers (median). This resulted in a final sample
of 48,795 repositories. The purpose of this filtering process was
to select repositories that represent actively maintained software
projects with a sufficiently long development history, written in one
of the major programming languages. For this paper, our goal was
to start with mature popular repositories. Thus, we selected 10,000
repositories based on a ranking approach that balances popularity
(#stars, #watchers, #contributors) and maturity (#commits to default
branch, project age, LOC).

Figure 1 outlines our data collection process for these 10,000
repositories. We cloned them and scanned their default branch to
find all types of context files that GitHub Copilot supports: Copilot
instructions, CLAUDE . md, AGENTS . md, and GEMINI.md [10]. We then
manually checked all repositories to exclude non-English and non-
software projects. We used the resulting data to answer RQ1 (see
Section 4.1). Since AGENTS.md is the only format that serves as an
open tool-agnostic convention, we decided to focus on it to answer
RQ2 and RQ3 (see Sections 4.2 and 4.3). Our data collection and
analysis scripts and the analyzed data are available online [23].

4 Results

4.1 Adoption (RQ1)

Only 466 (5%) of the repositories that we scanned had already
adopted at least one of the formats we considered, reflecting that
we are still in an early stage of adoption. One limitation is our focus
on four selected tools. We consider extending the analysis to cover
more tools (and more repositories) an important direction for our
future work. It will also be interesting to study trends over time,
e.g., whether projects converge toward one file format or whether
tool-specific formats persist.

The distribution of languages was roughly aligned with the lan-
guages’ general representation in our sample, although Go was
slightly overrepresented. We found Al context files in 135 reposito-
ries with TypeScript as main language, 58 Go, 58 Python, 56 C#, 36



Context Engineering for Al Agents in Open-Source Software

Copilot Instructions: 229 repos
CLAUDE.md: 183 repos
AGENTS.md: 119 repos
GEMINI .md: 29 repos

Validate that content is
in English and that they
are used for software

Sample of 10,000 popular
GitHub repositories used
for software development.

Clone and scan
default branch.

Copilot Instructions: 218 repos
CLAUDE .md:
AGENTS.md:
GEMINT .md:

MSR °26, April 13-14, 2026, Rio de Janeiro, Brazil

RQ1
1,318 u.nlque RQ2

Extract and headings

Excluded 4 files

headings.
without headings

181 repos
118 repos
29 repos

155
AGENTS . md files
from 116 repos.

U 466 repos

24 Sep 2025 24 Sep 2025

U 453 repos

Excluded 7 non-English repos
and 6 non-software repo

Excluded 15 files created
before 1%t Jan 2025,
1 non-Al config file

Extract version history. .
453 commits RQ3

17" Oct 2025

Figure 1: Data collection process.

Java, 34 JavaScript, 32 C++, 29 Rust, 19 PHP, and 9 C. Certain file
types were more prevalent in certain programming languages. C#,
for example, had a strong focus on Copilot, while Claude Code was
very popular for TypeScript. We also investigated which files most
commonly co-occurred, finding that (AGENTS.md, CLAUDE . md) was
the most common pair (25 repositories).

4.2 Information and Structure (RQ2)

Before we dive into our answer to RQ2, we briefly characterize
the content of Al context files. Copilot instruction files were on
average the longest (M = 310 lines, SD = 127 lines), followed by
CLAUDE . md files (M = 287, SD = 112); GEMINI.md files were the
shortest (M = 106, SD = 65). Interestingly, AGENTS . md files had the
highest variation in file length (M = 142, SD = 231). This variation
may reflect the amount of information that developers provide.
Exploring whether the context length is proportional to the project
size or other factors is part of our future work.

To answer RQ2, we extracted all section headings from the 155
AGENTS.md files in our sample, converted them to lower case, re-
moved special characters, and lemmatized the words to be able to
group semantically equivalent variations (e.g., “tests” and “testing”).
We excluded 15 AGENTS . md files that were created before 1 Janu-
ary 2025, i.e., before the AGENTS. md convention was introduced. For
each lemmatized heading, we determined (1) in how many distinct
repositories it occurred, (2) in how many distinct files it occurred
(#files > #repositories), and (3) how many total occurrences it had
(multiple equivalent headings per file). We excluded five reposito-
ries that contained AGENTS.md files without any heading structure.
For the remaining files, we recorded the heading levels (from #,
ie., level 1, to ####4, i.e., level 5) to understand their structural
depth. Following related work on README files [9], which found
that the first- and second-level headings are the most informative
and consistent, we restricted our initial analysis to these levels.

We manually developed an initial coding guide based on the 44
lemmatized section headings that appeared in > 3 different repos-
itories and > 3 times at heading levels 1 or 2. We then examined
examples of section content for each heading. The resulting coding
guide, shown in Table 1, groups semantically similar headings into
categories. We then applied this guide to a larger set of 91 lemma-
tized section headings that were used in > 2 repositories and > 2
times at heading levels 1 or 2. This analysis provides an overview of
the information most commonly provided in AGENTS.md files. Top-
ics such as code conventions and best practices, contribution guide-
lines, and architecture or project structure appeared frequently, in
contrast to sections on troubleshooting or security.

We also noticed differences in writing style when analyzing the
files. To examine these differences more closely, we analyzed all
50 sections labeled CONVENTIONS, the most common category in
our dataset. We found that the writing style can be characterized
along five stylistic dimensions: descriptive, prescriptive, prohibitive,
explanatory, and conditional. Some sections were descriptive, docu-
menting existing conventions without giving explicit instructions,
e.g., “This project uses the Linux Kernel Style Guideline.” Such state-
ments summarize current practices or configurations that the Al
agent should be aware of, rather than prescribing behavior. Others
were prescriptive, written as direct imperatives that instruct how
to act, e.g., “Follow the existing code style and conventions.” This
style provides explicit behavioral rules and was often formatted
as concise bullet points. Prohibitive statements were also common,
explicitly indicating what not to do, e.g., “Never commit directly
to the main branch.” These prohibitions set boundaries and clarify
the constraints that Al agents should respect. Some projects added
short explanations after the rules, resulting in an explanatory style,
e.g., “Avoid hard-coded waits to prevent timing issues in CI environ-
ments.” Here, the justification (“to prevent timing issues”) provides
context for why a convention exists. Finally, we observed condi-
tional formulations that specify what to do in certain situations,
e.g., “If you need to use reflection, use ReflectionUtils APIs.” This
style encodes situational logic, specifying conditional actions that
depend on the context of the agent’s task.

In summary, AGENTS.md files vary widely both in the informa-
tion they contain and how they are presented, yet some recurring
patterns are emerging. Projects often document architecture, con-
tribution processes, and coding conventions, but without a consis-
tent structure. Stylistic choices range from descriptive to directive,
reflecting experimentation with how best to communicate expec-
tations to Al agents. These observations suggest that conventions
for documenting context are still evolving and point to promising
opportunities for future work on how information structure and
style influence agent behavior.

4.3 Evolution (RQ3)

To answer RQ3, we analyzed the commit histories of all 155
AGENTS.md files and found that 77 (50%) of them had not been
changed, 36 (23%) only once, and 32 (21%) between two and seven
times. For this study, we were primarily interested in understand-
ing the types of changes developers make in Al context files. We
decided to focus on the 10 files (6%) with at least 10 commits, which
yielded a sample of 169 commits to annotate (37% of all collected
commits). The resulting modification patterns varied per file, with
some histories spanning a short period with many changes (e.g.,



MSR °26, April 13-14, 2026, Rio de Janeiro, Brazil

Table 1: Categories of information provided in AGENTS.md
files (last column: number of level 1 and 2 headings).

Mohsenimofidi et al.

Table 2: Categories of changes for AGENTS.md files with > 10
commits (last column: category frequency across all files).

Category Description # Category Description #

CONVENTIONS Outlines coding standards, naming/formatting conven- 50 Add INSTRUCTION(S) Add instruction line(s) to existing sections. 78
tions, and best practices for writing consistent and Modify INsTRUCTION(s) ~ Modify instruction line(s) within a section (ig- 59
maintainable code. noring typo fixes and references additions).

CONTRIBUTION Provides instructions for contributing to the repository, 48 Add sEcTION(S) Add new section(s) to the AGENTS.md file. 26

GUIDELINES such as branching, code reviews, or CI requirements. Remove INSTRUCTION(S) ~ Remove line(s) with instructions from existing 23

ARCHITECTURE/ Describes how the project or repository is organized, 47 sections.

STRUCTURE including key directories, modules, components, and Modify HEADING(S) Modify existing section heading title or level. 23
relationships between them. Modify TEXT Minor changes to content of AGENTS.md file, 19

BUILD COMMANDS
GOALS/PURPOSES

Lists commands for building, running, or deploying. 40
Summarizes what the project or agent does, its goals or 32
purposes, and high-level functionality or capabilities.
Explains how to execute test suites or individual tests, 32
including tools, commands, and environments.

Contains file metadata or configuration (e.g., tags). 29
Describes the overall approach to testing (unit, inte- 24
gration, end-to-end), test organization, or principles
guiding test coverage and design.

Lists programming languages, libraries, frameworks, 15
or other dependencies used in the project.

TEST EXECUTION

METADATA
TEST STRATEGY

TECH sTACK

SETUP Covers installation prerequisites, environment setup, 11
and initial steps required to run/use the project locally.

REFERENCES Provides a concise list of frequently used commands, 9
API references, or quick tips for developers or users.

TrROUBLESHOOTING  Offers guidance for diagnosing and resolving common 8

errors, failures, or configuration problems encountered
during development or deployment.
PATTERNS/EXAMPLES Shows reusable patterns, sample agent configs, or ex- 8
ample use cases to guide understanding or extensions.
Highlights security-related advice, configurations, or 6
precautions (e.g., managing secrets or access controls).

SECURITY

neomjs/neo: 49 changes over 19 days) and others spanning longer
periods with fewer changes (e.g., gofiber/fiber: 11 changes, 148
days). Although we did not analyze files with fewer than 10 com-
mits in detail, we noticed that the history of these files varied
significantly as well, ranging from 0 to 127 days, with 2 to 8 com-
mits. A more detailed analysis of evolution patterns is an important
direction for future work.

To understand what developers change in Al context files and
to inductively identify general change categories, we manually
reviewed the commits, including the source code diff, the commit
messages, and any related issues or pull requests. Two authors
developed an initial coding guide and then iteratively refined the
emerging categories and descriptions. We considered each commit
as an isolated change. Although most commits (111 commits, i.e.,
66%) represented only one change category, we observed commits
that represented multiple. Table 2 shows that some categories refer
to the overall structure of AGENTS.md files while others refer to
the content of specific sections, indicating a narrower scope. Note
that we currently do not quantify changes per category, meaning
that, e.g., ‘Add sECTION(S)’ can represent a change that added one
or multiple sections. Furthermore, we did not label the intent of
a change, e.g., why a certain section was added or removed. An
analysis of the intent of changes is the subject of our future work.

Table 2 shows that the most frequent change categories are ‘Add
INSTRUCTION(S)” and ‘Modify iNsTRUCTION(s) . For all examined
AGENTS.md files, these categories occurred as the first or second
change in the history of changes. Looking at commit messages
related to changes, we found a few interesting cases. For example,

such as fixing typos.

Changing visual appearance of content in 10
AGENTS.md file (not related to structure).

Remove sections from AGENTS.md file. 2
Update references, e.g., URLs. 2

Reformat sTYLE

Remove SECTION(S)
Update REFERENCE(S)

for AGENTS.md in rsyslog, one of the commit messages states “Al
support: Agent shall no longer call stylecheck.sh”. The related change
category is ‘Remove INSTRUCTION(S)’, because the change deleted
an instruction. A commit in eclipse-rdf4j/rdf4j fixed a flaky
test and updated the AGENTS.md file to handle flaky tests during
test execution. Analyzing co-changes of Al context files and other
artifacts is a promising direction for future work.

In summary, the evolution of the AGENTS.md files in our sample
varies, and we did not identify clear patterns in terms of when and
how often changes occur. However, we did identify common change
categories. Based on these categories, it appears that changes are
mostly made to fine-tune and adjust instructions.

5 Conclusion

In addition to README files for humans, OSS projects increasingly
include Al context files for Al coding agents. In other words, soft-
ware developers are now writing and maintaining documentation
for machines. Our results show that conventions for this new soft-
ware artifact are still in flux. Projects differ widely in what they
encode (e.g., conventions, architecture) and how they express it
(e.g., prescriptive vs. prohibitive). These stylistic variations mirror
different prompt writing practices. Thus, OSS repositories serve as
natural laboratories for studying how developers experiment with
“talking” to agent-based Al tools.

Al context files are maintained software artifacts. They are ver-
sioned, reviewed, quality-assured, and tested. Future work needs to
evaluate how their content, structure, and style affect agent behav-
ior and task performance, and how automated feedback loops could
update or refine these files based on observed results. Research
should also investigate the co-evolution of source code and related
Al context files, similar to the co-evolution of source code and com-
ments [8]. Open questions include whether standard schemas could
improve interoperability, whether repositories should maintain one
or multiple AI context files, and how to coordinate instructions for
multiple agents. Beyond technical considerations, this new form
of documentation has the potential to reshape communication, re-
view, and collaboration patterns in software teams as instructions
move from being written for humans to being negotiated between
humans and Al The systematic study of Al context files has great
potential to provide actionable recommendations to practitioners.


https://github.com/neomjs/neo/commits/dev/AGENTS.md
https://github.com/gofiber/fiber/commits/main/AGENTS.md

Context Engineering for Al Agents in Open-Source Software

References

(1]

[2

—

[3

T =
o)

[10]

[11

[12]

[13

[14]

[15

[16

[17]

[18

[19]
[20]

[21]

Anthropic. 2025. Claude 3.7 Sonnet and Claude Code. https://www.anthropic.
com/news/claude-3-7-sonnet.

Anthropic. 2025. Claude Code Best Practices. https://www.anthropic.com/
engineering/claude-code-best-practices.

Sebastian Baltes, Florian Angermeir, Chetan Arora, Marvin Mufioz Barén, Chun-
yang Chen, Lukas Bohme, Fabio Calefato, Neil Ernst, Davide Falessi, Brian
Fitzgerald, Davide Fucci, Marcos Kalinowski, Stefano Lambiase, Daniel Russo,
Mircea Lungu, Lutz Prechelt, Paul Ralph, Rijnard van Tonder, Christoph Treude,
and Stefan Wagner. 2025. Guidelines for Empirical Studies in Software En-
gineering involving Large Language Models. arXiv:2508.15503 [cs.SE] https:
//arxiv.org/abs/2508.15503

Worawalan Chatlatanagulchai, Kundjanasith Thonglek, Brittany Reid, Yutaro
Kashiwa, Pattara Leelaprute, Arnon Rungsawang, Bundit Manaskasemsak, and
Hajimu Iida. 2025. On the Use of Agentic Coding Manifests: An Empirical Study
of Claude Code. In Proceedings of the 26th International Conference on Product-
Focused Software Process Improvement (PROFES 2025).

Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in
GitHub for MSR Studies. In 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021, Madrid, Spain, May 17-19, 2021. IEEE, 560-564.
doi:10.1109/MSR52588.2021.00074

DAIR.AI Prompt Engineering Guide. 2025. Elements of a Prompt | Prompt
Engineering Guide. https://www.promptingguide.ai/introduction/elements.
Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M. Zhang. 2023. Large Language Models for Software Engi-
neering: Survey and Open Problems. In IEEE/ACM International Conference on
Software Engineering: Future of Software Engineering, ICSE-FoSE 2023, Melbourne,
Australia, May 14-20, 2023. IEEE, 31-53. doi:10.1109/ICSE-FOSE59343.2023.00008
B. Fluri, M. Wiirsch, E. Giger, and H. Gall. 2009. Analyzing the co-evolution of
comments and source code. Software Quality Journal 17 (2009), 367--394.
Haoyu Gao, Christoph Treude, and Mansooreh Zahedi. 2025. Adapting Installa-
tion Instructions in Rapidly Evolving Software Ecosystems. IEEE Trans. Software
Eng. 51, 4 (2025), 1334-1357. doi:10.1109/TSE.2025.3552614

GitHub. 2025. Copilot coding agent now supports AGENTS.md custom instruc-
tions. https://github.blog/changelog/2025-08- 28-copilot-coding-agent-now-
supports-agents-md-custom-instructions/.

GitHub. 2025. Search for most popular repositories. https://github.com/search?
q=stars%3A%3E10000&type=Repositories&s=stars&o=desc.

GitHub. 2025. Search for AGENTS.md files. https://github.com/search?q=path%
3A"*%2FAGENTS. md&type=code.

GitHub Changelog. 2025. Copilot Code Review: Customization for All. https://
github.blog/changelog/2025-06- 13- copilot- code-review- customization-for-all/.
Dexter Horthy. 2025. Getting AI to Work in Complex Codebases.
https://github.com/humanlayer/advanced- context-engineering- for-coding-
agents/blob/main/ace-fca.md.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2024. Large Language Models for
Software Engineering: A Systematic Literature Review. ACM Trans. Softw. Eng.
Methodol. 33, 8 (2024), 220:1-220:79. doi:10.1145/3695988

Laurie Hughes, Yogesh K. Dwivedi, F. Tegwen Malik, Mazen Shawosh,
Mousa Ahmed Albashrawi, Il Jeon, Vincent Dutot, Mandanna Appanderanda,
Tom Crick, Rahul De’, Mark Fenwick, Madugoda Gunaratnege Senali, Paulius
Jurcys, Arpan Kumar Kar, Nir Kshetri, Keyao Li, Sashah Mutasa, Spyridon
Samothrakis, Michael R. Wade, and Paul Walton. 2025. Al Agents and Agentic
Systems: A Multi-Expert Analysis. J. Comput. Inf. Syst. 65, 4 (2025), 489-517.
doi:10.1080/08874417.2025.2483832

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. 2025. A
Survey on Large Language Models for Code Generation. ACM Trans. Softw. Eng.
Methodol. (July 2025). doi:10.1145/3747588 Just Accepted.

Will Knight. 2024. Forget Chatbots. AT Agents Are the Future. https://www.
wired.com/story/fast-forward-forget-chatbots- ai-agents-are-the-future/.

LF Projects. 2025. Why AGENTS.md? https://agents.md/.

Hao Li, Hicham Masri, Filipe Roseiro Cégo, Abdul Ali Bangash, Bram Adams, and
Ahmed E. Hassan. 2025. Understanding Prompt Management in GitHub Reposi-
tories: A Call for Best Practices. CoRR abs/2509.12421 (2025). arXiv:2509.12421
doi:10.48550/arXiv.2509.12421

Ziyou Li, Agnia Sergeyuk, and Maliheh Izadi. 2025. Prompt-with-Me: in-IDE
Structured Prompt Management for LLM-Driven Software Engineering. CoRR
abs/2509.17096 (2025). arXiv:2509.17096 doi:10.48550/arXiv.2509.17096

[22]

[23

[33

[34

[35

[36

[38

(39]

[40

[41

MSR °26, April 13-14, 2026, Rio de Janeiro, Brazil

Lingrui Mei, Jiayu Yao, Yuyao Ge, Yiwei Wang, Baolong Bi, Yujun Cai, Jiazhi
Liu, Mingyu Li, Zhong-Zhi Li, Duzhen Zhang, Chenlin Zhou, Jiayi Mao, Tianze
Xia, Jiafeng Guo, and Shenghua Liu. 2025. A Survey of Context Engineering
for Large Language Models. CoRR abs/2507.13334 (2025). arXiv:2507.13334
doi:10.48550/arXiv.2507.13334

Seyedmoein Mohsenimofidi, Matthias Galster, Christoph Treude, and Sebastian
Baltes. 2025. Context Engineering for AI Agents in Open-Source Software (Supple-

mentary Material). doi:10.5281/zenodo.17428770
Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.

Curating GitHub for engineered software projects. Empir. Softw. Eng. 22, 6 (2017),
3219-3253. doi:10.1007/S10664-017-9512-6

Open Source Initiative. 2025. Approved Licenses. https://opensource.org/licenses.
OpenAl 2025. Introducing Codex. https://openai.com/index/introducing-codex/.
Stuart Russell and Peter Norvig. 2021. Artificial Intelligence: A Modern Approach.
Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal,
and Aman Chadha. 2024. A Systematic Survey of Prompt Engineering in Large
Language Models: Techniques and Applications. CoRR abs/2402.07927 (2024).
arXiv:2402.07927 doi:10.48550/arXiv.2402.07927

Philipp Schmid. 2025. The New Skill in Al is Not Prompting, It’s Context Engi-
neering. https://www.philschmid.de/context-engineering.

SEART. 2025. GitHub Search. https://seart-ghs.si.usi.ch/.

Significant Gravitas. 2023. AutoGPT. https://agpt.co/.

Samdyuti Suri, Sankar Narayan Das, Kapil Singi, Kuntal Dey, Vibhu Saujanya
Sharma, and Vikrant Kaulgud. 2023. Software Engineering Using Autonomous
Agents: Are We There Yet?. In 38th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2023, Luxembourg, September 11-15, 2023. IEEE,
1855-1857. doi:10.1109/ASE56229.2023.00174

Mahan Tafreshipour, Aaron Imani, Eric Huang, Eduardo Santana de Almeida,
Thomas Zimmermann, and Iftekhar Ahmed. 2025. Prompting in the Wild: An
Empirical Study of Prompt Evolution in Software Repositories. In 22nd IEEE/ACM
International Conference on Mining Software Repositories, MSR@ICSE 2025, Ottawa,
ON, Canada, April 28-29, 2025. IEEE, 686-698. doi:10.1109/MSR66628.2025.00106
Rosalia Tufano, Ozren Dabic, Antonio Mastropaolo, Matteo Ciniselli, and Gabriele
Bavota. 2024. Code Review Automation: Strengths and Weaknesses of the State
of the Art. IEEE Trans. Software Eng. 50, 2 (2024), 338-353. doi:10.1109/TSE.2023.
3348172

Hugo Villamizar, Jannik Fischbach, Alexander Korn, Andreas Vogelsang, and
Daniel Méndez. 2025. Prompts as Software Engineering Artifacts: A Research
Agenda and Preliminary Findings. CoRR abs/2509.17548 (2025). arXiv:2509.17548
doi:10.48550/arXiv.2509.17548

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2024. Software Testing With Large Language Models: Survey, Landscape,
and Vision. IEEE Trans. Software Eng. 50, 4 (2024), 911-936. doi:10.1109/TSE.2024.
3368208

Scott Wu. 2024. Introducing Devin, the first Al software engineer. https://
cognition.ai/blog/introducing-devin.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong,
Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao
Wang, Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou,
Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, Wenjuan Qin,
Yongyan Zheng, Xipeng Qiu, Xuanjing Huang, Qi Zhang, and Tao Gui. 2025. The
rise and potential of large language model based agents: a survey. Sci. China Inf.
Sci. 68, 2 (2025). doi:10.1007/S11432-024-4222-0

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao,
Karthik Narasimhan, and Ofir Press. 2024. SWE-agent: Agent-Computer Inter-
faces Enable Automated Software Engineering. In Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems
2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, Amir Glober-
sons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang (Eds.). http://papers.nips.cc/paper_files/paper/2024/
hash/5a7c¢947568c1b1328ccc5230172ele7c- Abstract-Conference.html

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024. Au-
toCodeRover: Autonomous Program Improvement. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2024, Vienna, Austria, September 16-20, 2024, Maria Christakis and Michael Pradel
(Eds.). ACM, 1592-1604. do0i:10.1145/3650212.3680384

Zibin Zheng, Kaiwen Ning, Qingyuan Zhong, Jiachi Chen, Wenging Chen,
Lianghong Guo, Weicheng Wang, and Yanlin Wang. 2025. Towards an under-
standing of large language models in software engineering tasks. Empir. Softw.
Eng. 30, 2 (2025), 50. d0i:10.1007/S10664-024-10602-0


https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/engineering/claude-code-best-practices
https://www.anthropic.com/engineering/claude-code-best-practices
https://arxiv.org/abs/2508.15503
https://arxiv.org/abs/2508.15503
https://arxiv.org/abs/2508.15503
https://doi.org/10.1109/MSR52588.2021.00074
https://www.promptingguide.ai/introduction/elements
https://doi.org/10.1109/ICSE-FOSE59343.2023.00008
https://doi.org/10.1109/TSE.2025.3552614
https://github.blog/changelog/2025-08-28-copilot-coding-agent-now-supports-agents-md-custom-instructions/
https://github.blog/changelog/2025-08-28-copilot-coding-agent-now-supports-agents-md-custom-instructions/
https://github.com/search?q=stars%3A%3E10000&type=Repositories&s=stars&o=desc
https://github.com/search?q=stars%3A%3E10000&type=Repositories&s=stars&o=desc
https://github.com/search?q=path%3A**%2FAGENTS.md&type=code
https://github.com/search?q=path%3A**%2FAGENTS.md&type=code
https://github.blog/changelog/2025-06-13-copilot-code-review-customization-for-all/
https://github.blog/changelog/2025-06-13-copilot-code-review-customization-for-all/
https://github.com/humanlayer/advanced-context-engineering-for-coding-agents/blob/main/ace-fca.md
https://github.com/humanlayer/advanced-context-engineering-for-coding-agents/blob/main/ace-fca.md
https://doi.org/10.1145/3695988
https://doi.org/10.1080/08874417.2025.2483832
https://doi.org/10.1145/3747588
https://www.wired.com/story/fast-forward-forget-chatbots-ai-agents-are-the-future/
https://www.wired.com/story/fast-forward-forget-chatbots-ai-agents-are-the-future/
https://agents.md/
https://arxiv.org/abs/2509.12421
https://doi.org/10.48550/arXiv.2509.12421
https://arxiv.org/abs/2509.17096
https://doi.org/10.48550/arXiv.2509.17096
https://arxiv.org/abs/2507.13334
https://doi.org/10.48550/arXiv.2507.13334
https://doi.org/10.5281/zenodo.17428770
https://doi.org/10.1007/S10664-017-9512-6
https://opensource.org/licenses
https://openai.com/index/introducing-codex/
https://arxiv.org/abs/2402.07927
https://doi.org/10.48550/arXiv.2402.07927
https://www.philschmid.de/context-engineering
https://seart-ghs.si.usi.ch/
https://agpt.co/
https://doi.org/10.1109/ASE56229.2023.00174
https://doi.org/10.1109/MSR66628.2025.00106
https://doi.org/10.1109/TSE.2023.3348172
https://doi.org/10.1109/TSE.2023.3348172
https://arxiv.org/abs/2509.17548
https://doi.org/10.48550/arXiv.2509.17548
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1109/TSE.2024.3368208
https://cognition.ai/blog/introducing-devin
https://cognition.ai/blog/introducing-devin
https://doi.org/10.1007/S11432-024-4222-0
http://papers.nips.cc/paper_files/paper/2024/hash/5a7c947568c1b1328ccc5230172e1e7c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/5a7c947568c1b1328ccc5230172e1e7c-Abstract-Conference.html
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1007/S10664-024-10602-0

	Abstract
	1 Introduction
	2 Related Work
	3 Data Collection
	4 Results
	4.1 Adoption (RQ1)
	4.2 Information and Structure (RQ2)
	4.3 Evolution (RQ3)

	5 Conclusion
	References

